NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

TIME STRIKE OFTIMIZATION MODEr, 71 Q0L Dteeworan
THROUGH SIMULATION
by
John J. Kosina
September, 1997

Thesis Advisor: Alan R. Washburn
Second Reader: v Arnold H. Buss

Approved for public release; distribution is unlimited.

19980206 032



REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1997 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

VALIDATION OF THE TIME STRIKE OPTIMIZATION MODEL THROUGH

SIMULATION

6. AUTHOR(S)

Kosina, John J.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) gRZE&IE?:#&%GREP ORT

Naval Postgraduate SChOOl NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

The TIME STRIKE optimization model was developed in 1995 for use by the cognizant US Air Force
agencies to investigate requirements for conventional munitions and the feasibility of operational plans based on
their availability and current budgets. The problem addressed here is: Is the output of TIME STRIKE accurate
when compared to a simulation? This thesis develops a computer simulation, called SimStrike, which models all
the same things TIME STRIKE does, using the same data, however with randomness used where TIME STRIKE
uses expectations. It was found that TIME STRIKE and SimStrike produce similar results.

Time Strike, Munitions, Optimization, Simulation, Linear Programming, USAF PAGES

84

16. PRICE CODE

17. SECURITY CLASSIFICATION g:; ':iElgtlj’:g; CLASSIFICATION | 19 SECURITY CLASSIFICATION :%smnon OF
OF REPORT o TS s OF ABSTRACT

Unclassified nclass Unclassified UL

NSN 7540.01.260-5500 Standard Form 296 (Rev. 2-89)

Prescribed by ANS! Std. 239-18







Approved for public release; distribution is unlimited
VALIDATION OF THE TIME STRIKE OPTIMIZATION MODEL
THROUGH SIMULATION
John J. Kosina
Licutenant, United States Navy
B.S.M.E., Wright State University, 1988
Submitted in partial fulfiliment of the
requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author: % Q, %
U/ v

John J. Kosina

- /’/ g

'« AlagnR. Washburn, Thesis Advisor

b & Tl

Richard E. Rosenthal, Chairman
Department of Operations Resecarch

o
-

Approved by:

11




v




ABSTRACT

The TIME STRIKE optimization model was developed in 1995 for use by the
cognizant US Air Force agencies to investigate requirements for conventional munitions
and the feasibility of operational plans based on their availability and current budgets.
The problem addressed here is: Is the output of TIME STRIKE accurate when compared
to a simulation? This thesis develops a computer simulation, called SimStrike, which
models all the same things TIME STRIKE does, using the same data, however with
randomness used where TIME STRIKE uses expectations. It was found that TIME
STRIKE and SimStrike produce similar results.




vi



TABLE OF CONTENTS

L INTRODUCTION ...ttt ettt sse s e s s st ene st e est e e eemeasen et esensnessenaseenaee 1
A. OPTIMIZING VS. EVALUATIVE MODELS .........coiiiiiiiieiiee e 1
B. THE TIME STRIKE OPTIMIZATION MODEL ..........ocoomriieieeceeeeteeeeeeeeee e 1
C. AIMOF THIS THESIS ...t e e e oot ee e an 2
IL. SIMSTRIKE DESCRIPTION ..ottt ettt e s e et st em et ees e e e etesenenen 5
A. COMPARISON OF TIME STRIKE AND SIMSTRIKE .........ccoouiiiiimiieiecceeeeceeeeeeee e 5
1. COnSITAINS ON SOTHES ......ooviiveiiieeec ettt ettt et et e e e e e ene e e seaeeenesaeeeeeeen 6
2. DiStribution OFf SOTHES ...........c.ooiieeiieiiti ittt ettt s e 7
3. Expected Kills Per Sortie (EKS).....ccoouiu it en e 8
4. ARIIHON PO SO, .......oivieiiti ettt ettt ee ettt seeenen e 8
5. Kl GOALS........ooeiiieiiieeee ettt ettt et et r bt ne et 8
6. Time Periods and Planming Cycles ............oooooiiiiiiiiiiece e 9
7. Battle-Damage Assessment and Target Regeneration..............cc...cccooooooiiioeiiiieecccc e, 10
8. Calculation of the Objective Function Value ................cccooeiiiiiiieiiieieee e 19
B. SUMMARY OF COMPARISONS OF TIME STRIKE AND SIMSTRIKE ...............ccccoooeevnn.n. 19
IEL  RESULTS ..ottt ettt e et e e s semt et et e e ens e e s emeemeeasas et s eanasemeenseemeans 21
AL RESULTS ...ttt e e st e e m e st as e et eae s as e e b ot aseesas e e sensessesenserene 21
B. SOURCES OF DIFFERENUCE ............ccooiiiiiiiiiieicieeeeee et s e e e ee s ee st 23
1. Period Transitions and ReSIKES .........ccoc.oeeiiieiouiiieeeier et aeee e ee e e 23
2. Target Rich ENVIFONMENL.........ccooiiiiiiiiiiiiiiici et 24
3. Proportioning of Sorties Over Time and Restrikes ...............occoiiiiiiiiinnniii, 26
C. CONCLUSIONS ..ottt ettt e a s s bt ss et e emest et ams e e s est et e et ensean s eeesensens 28
IV. FUTURE WORK L. ettt ettt ettt e esee e e s ese e s s e eneesseneeneas 29
A WEATHER ..ottt et et e e ettt ene et ettt ee s 29
B. PROBABILITY DISTRIBUTION FOR RANDOM ROUNDING.............occooieiiieiicer e 29
APPENDIX A. PROGRAM LISTING AND DIRECTIONS FORUSE ...........cooooiiiieiieeee 31
APPENDIX B. SAMPLE OUTPUT ...ttt aea e e e aa et enne s 57
LISTOF REFERENCGES ...ttt ettt et e s eae e ee e ane s s e s es s et et emteaeaserseaeneensenseennane 69
INITIAL DISTRIBUTION LIST ..ottt sttt 71

Vil




viil



LIST OF FIGURES AND TABLES

Figure 1. The four stages associated with sorties in each day of a SimStrike period
Figure 2. SimStrike Objective Function Value Histogram for 1000 Replications..................................... 22

Figure 3. Comparison of TIME STRIKE and SimStrike for a Target Rich Environment........................ 25
Table 1. Comparison Summary of TIME STRIKE and SimStrike.......................oooovoiiiiiiiiiice, 20
Table 2. Sensitivity ANAIYSIS. .........cuooviiieiii ittt ee et e e e e et eae s et e e e e 24
Table 3. Target Rich Environment Data for Figure 3..............coooooiiiiiiieeeee e 26
Table 4. Example of Carry-Over ReStHKeS .............c.ooeiiueiiiiiiiieeie et 27

iX







ACKNOWLEDGEMENTS

I wish to acknowledge the help provided by the following people, without whose
assistance this thesis would not have been possible. The first is my Thesis Advisor,
Professor Alan Washburn, who provided the guiding hand needed to get me back on
track when it was apparent sometimes that I was heading down the wrong avenues in the
development of the simulation. The second is Maj. Kirk Yost, USAF, the author of
TIME STRIKE, who always showed patience in answering the numerous questions I
seemed to have about his model.

xi




L INTRODUCTION

A. OPTIMIZING VS. EVALUATIVE MODELS

Models used in the field of Operations Research can be roughly divided into those
that find an optimal decision for some problem (optimizing models), and those that
merely evaluate a given decision (evaluative models). Since their ambitions are higher,
optimization models generally are forced to make more abstractions and approximations
in the data they use to achieve their results. These approximations may leave out much
of the detail otherwise involved in the decision process being modeled, so one is led to
ask the question: Are the results produced by a certain optimization model being studied
accurate enough for the approximations used?

This questions leads to the topic of verification of the optimization model.
Verification can be accomplished through construction of an evaluative model that
includes many more of the details left out of the optimization model. These details
consist of refinement of the approximations used in the optimization model to more
closely model the situation originally desired in the optimization model. The evaluative
model can be used to test the optimal solution, results obtained and compared, and
conclusions drawn.

This thesis attempts to verify one particular optimizing model, the TIME STRIKE
munitions optimization model, by constructing a parallel evaluative model called
SimStrike.

B. THE TIME STRIKE OPTIMIZATION MODEL

The linear program (LP) being evaluated by this thesis is the TIME STRIKE
munitions optimization model (henceforth simply referred to as TIME STRIKE). TIME
STRIKE was introduced in 1995 for use by various US Air Force agencies to develop
requirecments for conventional munitions, to refine operational plans based on the
availability of different mixes of munitions, and to assess the effects of procuring
different types and quantities of munitions [Ref. 1:p. i]. It creates sortie allocations
across time for a given strike scenario against enemy targets based on things such as the
type of aircraft, weapons types and loadouts, flight profiles possible, attrition and sortie
rates, the length of time periods, target regeneration and battle damage assessment




(BDA), weather, budget, etc. Depending on the desires of the user, TIME STRIKE has
available five objective functions [Ref. 1:p. 23], but the most useful of these, for the
purposes of this thesis, is the one maximizing the weighted sum of target-value-destroyed
(TVD) and time-scripted goals because it gives us a quantitative idea of the “reward”
gained for the number of targets killed.

Since TIME STRIKE is a large LP, it is forced to make some approximations in
order to permit it to stay linear. The major approximations made are permitting non-
integer values for the number of sorties flown and expected kills per sortie (EKS), and
using expected values in the place of random quantities. These approximations are
necessary since TIME STRIKE must remain linear, but they carry with them the potential
for error. Consider this simple example: Suppose there were 10 targets to be struck and
there were 6 sorties available, each with an EKS of 1.8. TIME STRIKE would simply
say you need (10 / 1.8 =) 5.6 sorties out of the 6 available to accomplish the mission,
assigning the remaining 0.4 sorties to some other target. On the other hand, suppose
instead that we force kills and sorties flown to be integer valued and random, as they are
in real life. Using the notation “[no. kills by sortie 1, no. kills by sortie 2,... ,no. kills by
sortie 6]” to represent how many kills each sortic makes against the 10 targets, on any
particular replication we may get the following results: [2, 2, 2, 2, 2, 0], which is a case
where the first 5 sorties kill all 10 targets, exactly, so the 6™ sortie need do nothing; [1, 2,
2, 2, 2, 2], which is a case where all 10 targets are killed with the number of kills
achieved by the first 5 sorties plus 1 of the 2 kills achieved by the 6™ sortie, but now there
1s 1 kill left over at the end, which could be applied to another target if there were more;
{1, 2, 1, 2, 2, 2], which is another case in which all 10 targets are killed, exactly, but this
time needing the total kills achieved over all 6 sorties in order to do it, instead of just the
first 5 sorties as in the first case examined; or, if the sorties are particularly unlucky, we
could get something like [1, 1, 1, 2, 1, 1], a case in which not all of the 10 targets could
be killed using 6 sorties with the EKS given! But the interesting thing, and also the cause
of concern, is that TIME STRIKE does not have to face any of these problems which
may occur in real life.

C. AIM OF THIS THESIS

This thesis develops an independent Monte Carlo simulation, called SimStrike, to
test the TIME STRIKE solution. SimStrike essentially re-flies the sorties output by




TIME STRIKE, but applying probabilities where TIME STRIKE uses expectations, and
randomly rounding the non-integer numbers of sorties output by TIME STRIKE to make
them integer. It accounts for all the same things TIME STRIKE does, i.e., weather,
BDA, kill goals, etc., and generates the mean TVD for a large number of replications
along with the standard deviation. The objective is to determine whether the output of
SimStrike equals the output of TIME STRIKE, on the average. The actual SimStrike
program listing and directions for use can be found in Appendix A, with a sample output
provided in Appendix B.

The remainder of this thesis is organized as follows: Chapter II provides a point
by point comparison of the major features modeled in TIME STRIKE and SimStrike,
along with a concise summary of these comparisons tabulated at the end of the chapter.
Chapter III discusses the results of the thesis obtained and conclusions drawn, and also
discusses some sources of difference between TIME STRIKE and SimStrike. Chapter IV
discusses two areas of future work which might be considered for possible future
revisions to SimStrike.







II. SIMSTRIKE DESCRIPTION

A. COMPARISON OF TIME STRIKE AND SIMSTRIKE

SimStrike is a simulation model developed to evaluate the TIME STRIKE
optimization model. SimStrike re-flies the sorties output by TIME STRIKE, and, using
the same attrition and expected kills per sortie (EKS) values for each engagement in each
period, applies probabilities rather than expectations to achieve its results. To achieve
accurate results, all the same things are modeled which affect the life of a sortie as in
TIME STRIKE.

Much of the complication in TIME STRIKE arises from the need to maintain the
linearity of the optimization model. As a result, some of the quantities which represent
physical entities, such as sorties, aircraft, and targets, are allowed to assume non-integer
(also continuous) values, rather than being restricted to integer values, as they should be
in real life, to represent unit quantities, e.g., 1 sortie, 1 aircraft, and 1 target vice 0.5
sorties, 0.6 aircraft, and 1.3 targets.

For the reader not familiar with TIME STRIKE, some explanations of terms used
is in order first:

A period is a fundamental unit of time in TIME STRIKE. In TIME STRIKE, the
entire time over which the model is run is divided into periods or user-selectable lengths,
with each of these periods consisting of the same number of fixed-length planning cycles
[Ref. 1:p. 8]. Planning cycles are more generally referred to as days, the two terms being
interchangeable in meaning. Many variables and data items used in TIME STRIKE are
subscripted by period, but not by day. In this thesis, the terms campaign or timed strike
are also used to represent an entire run of the TIME STRIKE model over time.

Once TIME STRIKE sorts through the user-provided data, sorties are assigned by
TIME STRIKE to fly engagements against targets [Ref. 1:p. 1], an engagement being the
term applied to an encounter between a single sortie and its assigned target(s). A sortie is
an aircraft taking off, flying strikes against one or more targets, making kills against them
or perhaps being killed itself, then returning to land if not attrited. Targets are, to put it
simply, the enemy. Target types refer to a group of targets which are all the same, i.e,,
all anti-aircraft guns, all tanks, all transport vehicles, etc. Target classes refer to a group
of target types which all have the same kill goals, i.e., the same amount expected to be
dead or in repair at a certain point in time during the campaign.




Battle-damage assessment (BDA) is a term used to represent what is thought to be
the results of a previous day’s strikes. If BDA is perfect, every target killed is known to
be either dead forever, i.e., no chance of being repaired or coming back to life, or
undergoing regeneration, i.c., being repaired. If BDA is less than perfect, in addition to
knowing about dead targets as a result of being killed by sorties, one or more of these
dead targets may be thought to be still alive, in which case a restrike sortie (henceforth
simply referred to as a restrike) is assigned to be flown against it the next day. When a
dead target is misclassified as still being alive, the term mis-BDA is used to apply to this
situation. The possibility that live targets might be thought dead is modeled in neither
TIME STRIKE or SimStrike.

1. Constraints on Sorties

Before TIME STRIKE can assign sorties to strikes against targets, it must sort
through the user-provided data to find valid combinations of aircraft, weapons, weapons
loadouts, delivery tactics (or profiles), time periods, weather states, and target types [Ref.
1:p. 1]. The number of available sorties is a function of the sortie rate, the attrition rate,
and the length of the time period [Ref. 1: p. 54]. The sorties are then further constrained
by the assigned missions which must be performed each period.

Because TIME STRIKE is an LP, it assumes perfect information with regards to
restrikes, so it knows from the start exactly how many sorties it must place in each day of
each period in order to carry out the restrikes. Sorties are proportioned over each day of
each period to exactly accomplish the restrike missions with no excess left over. Herein
lies a deviation from reality. In real life, it is not physically possible to assign 1.2 sorties,
for example, to a restrike mission against some mis-BDA’d target. How does one come
up with 0.2 sorties as a mission planner? TIME STRIKE allows this, however.

There is a similar problem for targets. Since target regeneration and kills are
being optimized in TIME STRIKE to achieve the maximum possible TVD, targets may
be proportioned as non-integer quantities with non-integer EKS to allow a non-integer
number of sorties to kill every last one of the targets. The question which arises here is:
How can TIME STRIKE’s advice be taken? Or another way of stating the question: Can
we be assured of the accuracy of its results given this obvious deviation from reality?

SimStrike handles this aspect a little differently than TIME STRIKE. The total
number of sorties an aircraft type actually flies in SimStrike is either the total flown by



the same aircraft in TIME STRIKE, which is the maximum possible it could fly in the
period, or some lesser value which could be as a result of losing the maximum number of
aircraft allowed for the aircraft type in the period, or achieving the kill goal for the target
type in the period, or simply killing the remainder of the targets. However, since
SimStrike works exclusively with integers for physical entities, i.e., sorties, targets, and
aircraft, and therefore also with EKS, target kills are tallied as integers, or whole objects
of whatever type the targets are, which is the case in reality. So when an aircraft kills a
target, it does not kill a portion of it, it kills the whole target. Likewise, when sorties are
flown, they are flown as whole entities, not fractions of sorties.

The restrictions placed on the flying of sorties in SimStrike are all the same major
restrictions placed on sorties by TIME STRIKE.

2. Distribution of Sorties

The number of sorties flown by any aircraft against any target by TIME STRIKE
in any period is uniformly distributed over the period, proportioning a certain number for
each day of the period to account for all the actions which must be performed, i.e.,
restrikes, strikes against live targets, target regeneration, aircraft attrition, and weather
aborts. The smallest time unit of resolution for sorties is by period. Also, aircraft do not
really exist in TIME STRIKE, but rather aircraft sorties. “Aircraft” is merely a term used
to represent a category for which losses are counted while the LP optimizes under the
constraint that there is a cap on how many aircraft of each type can be lost, which is
cumulative over time.

SimStrike handles this differently and comes closer to reality on the issue of
sorties and aircraft. SimStrike treats aircraft as actually existing and important entities,
separate from the number of sorties they actually fly. Each aircraft is given individual
attention as it flies its sorties. SimStrike still distributes sorties uniformly over each
period as TIME STRIKE does, but the main difference is that once the number of sorties
is distributed uniformly over the period in the simulation, this value is used to produce
how many sorties per day an aircraft could possibly fly, i.e., the maximum available for
the day for the aircraft type. But then SimStrike rounds this non-integer valued quantity
randomly to an integer value, e.g., 2.3 sorties have a 70 percent chance of being 2 and a
30 percent chance of being 3 sorties. Over a large number of replications of SimStrike,
we expect this random rounding to average to the number TIME STRIKE flies.




3. Expected Kills Per Sortie (EKS)

EKS is input data to TIME STRIKE, subscripted by aircraft type to which the
sortie belongs, weapon, target, weapons loadout, weapons delivery profile, and time
period. EKS can be greater than 1 for a sortic with multiple weapons, and need not be an
integer. To describe the problem which exists with this in TIME STRIKE, we go back to
the simple example mentioned in Chapter I. If EKS is 1.8, and there are 10 targets with 6
sorties available to fly strikes against them, TIME STRIKE will allow (10 / 1.8 =) 5.6
sorties to fly and exactly kill the 10 targets. In reality, it is not possible to proportion
physical entities such as targets and sorties in this manner.

EKS is also input data to SimStrike, but SimStrike rounds EKS values randomly,
as it does sorties, to make them integer. If an aircraft is not attrited and does not
experience an in-flight weather abort, it is expected to make kills against any remaining
live targets based on its EKS in SimStrike. Since sorties, targets, and target kills are
integer valued, an integer number of kills is applied to an integer number of targets.

4, Attrition Per Sortie

TIME STRIKE treats attrition as a non-integer valued expectation of aircraft
losses over time and so proportions a certain number of these losses over each period (see
Ref. 1 for details). The problem here is that aircraft, like targets, are physical entities in
real life. Either the whole aircraft must be destroyed, or none of it.

SimStrike maintains this integrality of attrition. Before an aircraft sortie has a
chance to do anything else in SimStrike, whether it be restrikes or regular strikes against
live targets, it has a chance to be attrited based on this sortie’s attrition value. If attrited,
it does not get a chance to kill any targets, i.e., no “kamikaze” capability, and loses the
remainder of its sorties for the day. SimStrike then proceeds to the next aircraft in the
loop, or the next day if this was the last aircraft to fly. Other aircraft must pick up the
lost aircraft’s mission requirements, as would be the case in reality. If an aircraft is
attrited, the total number of aircraft of this particular aircraft type is decremented by 1.

5. Kill Goals

The chosen objective function is based on time-scripted kill goals for each of the
target classes present. These kill goals in TIME STRIKE are cumulative over time so




that in at least the last time period of a campaign this value is 1.0. A kill goal of 1.0
translates into all the targets originally present in the beginning (start of period 1) of this
particular target type are expected to be dead or in repair (a target must be struck and
killed before it has a chance to be in repair) by the end of the period of the campaign in
which the kill goal became 1.0. Aircraft in any period can kill up to the kill goal, but not
over the goal, with anything killed which was less than the goal being charged as a
penalty against any TVD reward gained so far.

This aspect of TIME STRIKE is modeled exactly the same in SimStrike, with the
only difference being that the actual calculation in SimStrike of the proportion killed,
found from the number of targets dead or in repair divided by the total number present at
the very start, has a numerator and denominator which are both integer. This presents the
possibility of some instances arising where SimStrike cannot exactly meet kill goals in
some periods. For example, if the kill goal for one period is 0.5, and for the next period
it is 0.75, and say there are 3 targets, the most kills SimStrike can hope to achieve in the
first period is 1 out of the 3 targets, which is approximately 0.33 proportion killed and
under the goal of 0.5. If it killed 2, this would create a proportion of approximately 0.67,
which is over the goal and so not allowed. Therefore, to make the 2™ kill, SimStrike
would force the sorties to wait until the next period when the kill goal is 0.75, and the 3™
kill would have to wait until a period in which the goal rises to 1.0.

6. Time Periods and Planning Cycles

The number of periods and days per period are input data to TIME STRIKE.
TIME STRIKE places the required number of sorties into each of these days, or planning
cycles, with the expectation of accomplishing everything planned for that day, ie,
restrikes and regular strikes against live targets.

The problem is that in reality, a sortie may not be able to accomplish the mission
is was assigned to perform. Whether because of nature or pure bad luck, the sortie might
experience an in-flight weather abort, not kill as many targets as thought, or perhaps
more, or suffer attrition. The randomness of nature is not modeled in TIME STRIKE
when it comes to sorties. Everything planned may not get accomplished in a day, with
the result that tomorrow’s sorties may have to pick up some of today’s mission
objectives.




The number of periods and days per period are also input to SimStrike. The file
of solution variables generated by TIME STRIKE after each run of the model, from
which SimStrike will directly read data for its corresponding run, generates a line of data
for each engagement run by each aircraft type flying sorties against a particular target
type. So, for example, if aircraft type 2 flies sorties against target type 5 once in each of
five periods, there will be a total of five lines of data for this scenario, one for each
engagement run in each period. The file is organized by period and then by aircraft type
in each period. This file is in spreadsheet format and is called “TSVTST.CSV”, and is
placed in the TIME STRIKE “RESULTS” directory after each run of the LP.

Each line of data in this output file will contain the total number of sorties flown
over the whole period for the engagement run. Once the number of sorties per day is
determined by SimStrike, it then simply steps through the days in the period. In each
day, each surviving aircraft gets to fly sorties at its sortie rate against the targets of the
target type, first against restrikes, and then until the maximum possible number of sorties
is flown, the maximum allowed amount of aircraft are lost, all the targets are dead, or the
kill goal is reached. SimStrike essentially uses nested loops here to accomplish this with
test conditions for premature exit. This way SimStrike can model reality as close as
possible by exiting a loop before normal completion when necessary because the
conditions for exit exist. There is also a varying condition for the start of the aircraft
loop for each day, based on how many aircraft of the aircraft type have been lost, which
is continuously updated.

The important aspect modeled by SimStrike here is that the randomness of nature
does exist and must be accounted for. While SimStrike reflies TIME STRIKE’s sorties,
the result may not be the same. For example, the same number of sorties required to
accomplish restrikes on one day, may not be the number SimStrike uses due to possibly
having to account for mission objectives which were not accomplished by the sorties on a
previous day, or fewer sorties may be needed for the restrikes simply because they were
luckier and conducted more kills per sortie. In summary, the randomness of reality and
changing mission requirements is modeled in SimStrike.

7. Battle-Damage Assessment and Target Regeneration

As part of the target data input to TIME STRIKE for each target type, there are
probability expectations associated with correct BDA and repair proportions for killed

10




targets, the repair proportions having to do with target regeneration. These are dealt with
as proportions by TIME STRIKE when determining how many targets will be restrikes
and how many will be in repair in each day of each period, separate from the other
category which is possible, namely targets which are killed and become dead forever.
All targets are in one of these three states throughout a run of TIME STRIKE: a restrike
(mis-BDA’d), in repair, or dead forever. For a more detailed explanation of the precise
determining equations associated with placing the targets into these categories, the
interested reader is referred to Appendix A of Ref. 1.

The problem with this classification method used by TIME STRIKE is that the
same proportion of targets struck and killed on any previous day of a period will get into
one of the three categories mentioned above on a current or future day every fime. One
therefore knows with certainty that for a certain number killed today, what the proportion
of targets are that must be restruck tomorrow, or what future regeneration will be. Again,
the randomness of reality is not present here in TIME STRIKE.

The same data for BDA and target repair/regeneration are used as probabilities
within SimStrike and are applied across essentially four stages, or phases, which must be
accomplished, or at least checked to see if the conditions are right for accomplishment,
each day of the campaign. These four stages are: (1) Regeneration, executed once each
day, which represents the probability of targets killed in previous days of regenerating on
the current day; (2) Restrikes, executed once each day, but potentially by more than one
aircraft and possibly many sorties, depending upon how many restrikes there are, until all
the restrikes are complete or all the day’s are sorties flown against them; (3) Regular
strikes against actual live targets based upon each sorties’ EKS value; and (4)
Redistribution of kills made by the regular strike phase based on BDA. When actions
against targets are kept track of in this manner, the same categories possible for targets in
TIME STRIKE are also modeled in SimStrike. The major difference, however, is that
the same proportion of killed targets will not be placed into the same category each time.
Instead, the randomness of reality is accounted for in SimStrike, and it is only possible,
based on probability, for a killed target to evolve in a certain way throughout any
particular simulation run, which will not be the same way every time SimStrike is run.

For purposes of the discussion of these stages in the subsections which follow, we
will refer often to Figure 1 below, which is an example of progressing through these
stages with 40 targets of a particular target type, with the starting condition as shown for
each of the categories, and the probabilities of following any path as indicated on the

11




arrows. The notation “Pc {2} means, for example, that with probability Pc, every target
in the category at the tail of the arrow will move independently to the category at the
head of the arrow, and in this case 2 targets met the conditions for movement on the
arrow; when just a number in brackets is present, with no associated probability listed
next to it, e.g., “{3}”, this means that all targets in the category at the tail move to the
category at the head of the arrow.

a Target Categories

The six target categories shown in Figure 1, which are also what the
variable names are called in SimStrike, are defined below:

(1) LiveN Targets. LiveN targets are the number of live targets
that are not restrikeable. These represent all the actual live targets, recognizable as alive
by the aircraft flying sorties against them. At the start of a replication of a SimStrike run,
this variable is initialized to the total number of targets of the target types present as read
in from the data input file.

(2) DeadN Targets. DeadN targets are the number of dead
targets that are not restrikeable. These are targets which are dead forever, i.e., will not
regenerate or be subject to BDA. Once a target gets into this category, it stays there

throughout the remainder of the SimStrike replication run.

(3) RegenN Targets. RegenN targets are the number of
repairable targets that have previously been killed but placed into repair, and are not
restrikeable.

12




... Start Day

LIVEN DEADN REGENN LIVER DEADR REGENR
Starting 20 10 5 0 3 2
Condition

lpc {2} [PC_{_IL
-

Regen 22 10 3 1 3 1

...Sorties Flown

Restrike 22 14 4 0 0 0
|{3} kills by sorties flown I

... Sorties Flown

Regular 19 14 4 0 0 0

Strike

Now have 37 targets with 3 kills which must be redistributed

B{1}]

astl e

/

Redistr. 19 15 4 0
...End Day =» Now go to next day and start process over again...

Figure 1 - The four stages associated with sorties in each day of a SimStrike period.

13




(4) LiveR Targets. LiveR targets are the number of live targets
that are restrikeable. This category represents the number of targets which have just
come out of repair in the planning cycle but may be restruck and returned to repair

(become a RegenN target), or become dead forever (a DeadN target).

(5) DeadR Targets. DeadR targets are the number of dead targets
that are restrikeable. These are the targets that were actually killed in a previous
planning cycle but were not repairable, i.e., dead forever, but were mis-BDA’d and are
believed to be still alive. The only possibility for these targets are to become dead
forever (DeadN) when restruck.

(6) RegenR Targets. RegenR targets are the number of
repairable targets that are restnikeable. These targets may regenerate and become a
LiveR target, or remain as a RegenR target through the regeneration phase, and then any
remaining RegenR targets may become RegenN or DeadN targets during the restrike
phase.

b. Comparison of SimStrike Target Categories with TIME STRIKE

TIME STRIKE does not explicitly use the target categories as shown in
Figure 1 and described above, but allows for each of the same six possibilities for the
state of a target at any given time through the BDA equations it uses to calculate the
proportion of targets existing in each of the states over time (see Appendix A of Ref. 1).
These six categories in SimStrike, however, along with the associated probabilities
shown on the arrows in Figure 1, and defined below, model the same aspects of the BDA
equations used in TIME STRIKE, but probabilistically.

(1) Probability a target regenerates in the next planning cycle,

Pc. This probability is associated only with the RegenN and RegenR categories of

- 1/ Repair Time

targets in SimStrike and 1s calculated from, Pc =1 -¢ , where “Repair Time”

14



is input data for both TIME STRIKE and SimStrike representing the amount of time in
days required for repair of a killed target of a particular target type. The probability NPc
is merely the quantity (1 - Pc).

During the regeneration phase at the start of each day, this is the
probability used to determine how targets in the RegenN and RegenR categories will be

distributed as shown by the arrows in Figure 1.

(2) Probability a target is repairable after a strike, Pr. This
probability is used in two of the four phases which sorties experience each day, the
restrike and redistribution of kills phases. The most obvious application is within the
redistribution of kills phase where, after the BDA of the targets just killed has been
determined, for each of the groups of good and mis-BDA’d targets, this probability is
used to determine which ones will go into a regeneration, or repair category, and which

will go into a dead category.

The other application, which is not so obvious but still modeled
within TIME STRIKE, is in the restrike phase. If the category chosen from which the
restrikes will come, which is randomly decided in SimStrike, is from the DeadR
category, we do not have to worry about this probability, or any probability for that
matter because these targets will, with probability 1.0, become dead forever, or DeadN,
when they are restruck. However, if the category chosen from which restrikes will come

is either LiveR or RegenR, the probability Pr applies.

Pr is set equal to the repair proportion read in for each target type,
which is data to both TIME STRIKE and SimStrike. When restrikes are chosen from the
LiveR or RegenR category, the restruck targets are distributed as shown in Figure 1 for
the probability Pr. NPr is merely the quantity (1 - NPr).

15




(3) Probability of correct BDA for a target, B. This probability
only exists in the decision process within the redistribution of kills phase. It is simply
used to decide which of the targets just killed in the regular strike phase will have correct
BDA, and which will be mis-BDA’d (NB = 1 - B), i.e., thought to be still alive, and must
therefore be restruck the next day, even though they were actually killed. Of these two

groups, it is further decided whether they will also become dead or in repair as shown in

Figure 1.

c. Description of the Four Stages associated with Sorties

“Stages”, and “Phases”, are identical in Figure 1. These stages are passed
through in the same order every day of a SimStrike run: (1) Regeneration, (2) Restrike,
(3) Regular Strike, (4) Redistribution of Kills.

It is important to remember that any numbers in “{e}” in Figure 1
represent the number of targets moving along that arrow as a result of execution of that
stage. The arrows point to where the targets are moving, and Figure 1 is only an example
of what may happen in one day for a case where there are 40 targets to start with. Also,
throughout a SimStrike run, it is always true that (LiveN + DeadN + RegenN + LiveR +
DeadR + RegenR = Total number of targets starting the SimStrike run). In the example
in Figure 1, this total would always be 40.

The following is a description of what happens in each of these stages:

(1) Regeneration Stage. This stage in SimStrike is within the
days loop but outside of the aircraft loop so it is only executed once per day. This stage
1s executed independent of aircraft and their sorties, only operating on any targets in the
RegenN or RegenR categories. As shown in Figure 1, this stage marks the beginning of a
new day and represents the first thing which must be done, or decided by SimStrike for a
new day, the initial conditions of which are the results of the previous day’s actions.
This is meant to model the same lag in detection of regenerated targets by one planning
cycle that TIME STRIKE does, preventing it from acting on new information until the
next day [Ref. 1:p. 11]. The number of targets in the RegenN category that move to the

16




LiveN category is determined from a Binomial(RegenN,Pc) probability (see Ref. 2 or any
probability and statistics textbook for a discussion of Binomial probabilities), with the
remainder left in the RegenN category. Likewise, the number in the RegenR category
which will move to the LiveR category is determined from a Binomial(RegenR,Pc)

probability, with the remainder left in the RegenR category.

(2) Restrike Stage. This and the remainder of the stages are
within the aircraft loop because although they are only executed once per day, some or
all of the aircraft of the aircraft type involved in the strike may fly sorties against the
target type. Aircraft flying sorties against restrikes are still subject to attrition and in-
flight weather aborts just as they are for regular strikes against live targets. As with
regular strikes, if an aircraft is not attrited and does not experience an in-flight weather
abort, it is expected to make “kills” against these restrikes. All restrikes for the target
type must be done before any aircraft of any type is allowed to fly sorties against actual
live targets of the target type, just as is done in TIME STRIKE.

Restrikes are accumulated from the Regular Strike phase of the
previous day, or potentially carried over from more than one day ago. The latter case
would mean all the aircraft fly their sorties against restrikes but cannot quite finish them
all off and so do not proceed to the regular strike stage, in which case restrikes may

accumulate for more than one day.

When sorties are making restrikes, there are three categories from
which the accounting for the “kills” against them can come: LiveR, DeadR, or RegenR.
SimStrike assumes each restrike is against a target randomly chosen from the total of all
these categories. Binomial(category,Pr) probabilities apply to the distribution of kills for
the LiveR and RegenR categories, with the targets in the DeadR category always going to
the DeadN category when they are struck, as shown in Figure 1.

17




Aircraft will continue to fly sorties against the target type’s
restrikes until all are restruck (LiveR, DeadR, and RegenR all equal to zero), the
maximum number of sorties possible are flown, or the maximum allowed amount of
aircraft are lost due to attrition. The exit conditions of the restrike stage will then

contribute to the initial conditions of the regular strike stage.

(3) Regular Strike Stage. This stage involves only those targets
in the LiveN category. When restrikes are complete, and if there are aircraft sorties
remaining to be flown, then, if these aircraft are not attrited and do not experience an in-
flight weather abort, they are expected to make kills against actual live targets based on
their EKS values. When the aircraft gets to this point within this stage, there are no
longer any probabilities associated with the outcome of the kills it will make, as shown in
Figure 1, with the exception of the random rounding of the sortie’s EKS value to make it

integer.

The number of kills this sortic will make is calculated and then
program flow immediately passes to the redistribution stage to distribute these kills

amongst the possible categories as shown in Figure 1.

(4) Redistribution of Kills Stage. The kills are distributed as
they are made amongst the possible categories to which they can go based on the
probabilities B, NB, Pr, and NPr as shown in Figure 1. Thus, the redistribution stage
actually occurs successively right after the regular strike stage for each sortie, but a
boolean condition prevents the restrike stage from being executed more than once per

day, even though it is within the aircraft loop.

When the maximum number of sorties have been flown, the
maximum number of aircraft has been lost, all the targets have been killed, or the kill

goal has been achieved, the current day ends.

18




8. Calculation of the Objective Function Value

In TIME STRIKE, two general quantities are calculated to be used in the overall
objective function value calculation: the TVD reward gained, and the penalties for not
meeting the time-scripted kill goals in each period, if any [Ref. 1:p. 24]. TIME STRIKE
takes credit in each period for the target value of each target for the current period, times
the total number of each target currently dead or in repair. Penalties against TVD gained
are calculated from a set of known kill goals, which are data to TIME STRIKE and are
cumulative over time. The kill goals constrain the total targets dead or in repair through
the end of a particular period to a proportion of the total targets originally present at the
start of the campaign. TIME STRIKE is allowed to kill targets up to the goal, but not
over the goal in each period. Any difference below the goal is taxed against TVD by
summing the weighted proportional differences over all periods for all target types.

SimStrike calculates the same objective function as TIME STRIKE. The
simulation routine within SimStrike is run once for each of TIME STRIKE’s sortie
variables obtained from the output data file “TSVTST.CSV”. At the end of a run, just
before program flow passes back to the main program within SimStrike, the TVD reward
is collected by multiplying the target value applying to the current period for the current
target type by the quantity (DeadN + RegenN + DeadR + RegenR), which represents all
the targets of the target type dead or in repair at this point in time.

B. SUMMARY OF COMPARISONS OF TIME STRIKE AND SIMSTRIKE

Table 1 on the following page provides a summary of the comparisons made
between TIME STRIKE and SimStrike in section A.

19




Category " TIME STRIKE SimStrike

Constraints on Sorties

Fractional sorties and

Integer sorties and targets

targets

Distribution of Sorties Deterministically uniform | Randomly uniform over
over periods periods

EKS Fractional numbers of kills | Integer numbers of kills

Attrition Per Sortie Fractional losses of Integer losses of aircraft
“aircraft”

Kill Goals Cumulative proportion of Cumulative proportion of
original number of targets original number of targets
expected to be dead expected to be dead

Time Periods and Planning {| Periods and days; mis- Periods and days; mis-

Cycles BDA’d targets become BDA’d targets become
restrikes the next day with | restrikes the next day with

all restrikes taken care of on
the day they are assigned

the possibility existing that
not all restrikes will be
taken care of on the day
they are assigned, i.e., may
carry over one more day

BDA and Target
Regeneration

Treated as proportions

Treated as probabilities

Calculation of the Objective
Function Value

TVD taxed by penalties for
not meeting kill goals

TVD taxed by penalties for
not meeting kill goals

Table 1 - Comparison Summary of TIME STRIKE and SimStrike

20



III. RESULTS

A. RESULTS

Two simplifications were made in SimStrike for the purposes of this thesis. The
first was to make all aircraft arrive on the first day of the campaign. For this, the data
files were matched to have the total amount of aircraft of each aircraft type simply be
read in as being there the very first day of the first period. The second was to run TIME
STRIKE and SimStrike over only one Major Regional Conflict (MRC). Therefore, the
attribute of allowing aircraft swings between two MRCs was not modeled.

A model data set was provided by Maj. Kirk Yost, USAF, (TIME STRIKE’s
author) for an example Air Force simple strike scenario. The scenario the input data sets
to TIME STRIKE represent are groups of known targets and their locations at various
distances from the sortie origination point, a given set of aircraft, weapons, crew
qualifications, weather forecast, kill goals, etc., meant to represent just one of many
possible MRC’s. The data set was unclassified, but representative of realistic data in use.
For this data set, TIME STRIKE produced an answer of 4,140,022 “points”. Using the
same data set, after 1000 replications, SimStrike produced an (mean) answer of
4,010,561 points with a (sample) standard deviation of 245,326. The answers produced
at each replication of SimStrike are plotted on a histogram in Figure 2 on the next page.
Assuming TIME STRIKE is producing the true mean and SimStrike is producing the
sample mean and standard deviation for a large sample (large number of replications),
the Sample t-Test [Ref. 2:p. 322] with a null hypothesis of H,: p = p, and corresponding
alternative hypothesis H,: p # 1, produced a test statistic value of 16.7. This is enough
to reject the hypothesis that TIME STRIKE and SimStrike produce the same results at
virtually any level of confidence desired.

The question now is: What does this mean for TIME STRIKE? Does it lead one
to conclude that the model is no good? The answer to this last question is emphatically
NO. After all, the objective functions differ by only 1%. TIME STRIKE’s problems are
incurable, but not serious, and these results only lead to the need to study the way the LP
models reality a little closer.

21




4200000 —
4000000 —
3800000 —
3600000 —
3400000 —
3200000 —
3000000 —
2800000 —
2600000 —
2400000 —
2200000 —

TVD

! | 1 1 | | a
0 100 200 300 400 500 600

Frequency

Figure 2 - SimStrike Objective Function Value Histogram for 1000 Replications

22




B. SOURCES OF DIFFERENCE

This section will discuss some explanations of why TIME STRIKE and SimStrike
results differ.

1. Period Transitions and Restrikes

In TIME STRIKE, within the same period, any targets killed today which carry
over to tomorrow as restrikes due to bad BDA, must be restruck before any further live
targets of the same target type are allowed to be struck. A problem occurs when the
restrikes carry over from the last day of one period to the first day of the next period, in
which case the model does not allow sorties to be flown against them due to the
problems of mathematical complexity at the time the model was developed. Instead, it
discounts TVD by the number of restrikes which would have to be done, were they
allowed to be, times the target value of this target type for the new period. The restrikes
are then essentially discarded and regular sorties are flown against live targets of the
target type. To reiterate, this only occurs at period transitions within TIME STRIKE.

In SimStrike, period transitions are transparent as far as restrikes are concerned.
If restrikes carry over from the last day of one period to the first day of the next period,
they are restruck first, as they would be in any other day, before sorties are flown against
actual live targets of the target type. SimStrike essentially views all the periods as
actually just a string of days, which happen to transition through periods, only using the
current period number to determine which data gets manipulated with other variables,
e.g., target values, kill goals, etc. SimStrike merely lets restrikes randomly play out over
time. This accounts for only a small numerical difference between the results of
SimStrike and TIME STRIKE as shown in Table 2 below, and only a slight difference
from the result SimStrike produced as noted in Section A above.

Also shown in Table 2 is a sensitivity analysis for four other special cases
performed to compare results between SimStrike and TIME STRIKE. As can be seen,
the results all closely agree quantitatively, except for a target rich environment, Case 4,
which is explained further in the next subsection below. The scaling factor for a target
rich environment is the reduction from the base case, 1.0, which is no change in the
original number of aircraft present, i.e., not target rich or target poor. For example, the
scaling factor shown in Table 2 for Case 4 means the base case, 1.0, divided by 2, or half
the number of aircraft originally present, to produce a scaling factor of (1.0/2 =) 0.5.

23




TIME STRIKE SimStrike
Objective Function | Objective Function SimStrike
Value Value Standard Deviation
(1) No restrike 4,140,022 4,000,164 236,407
carry-over at period
transitions
(2) Perfect BDA 4,235,479 4,020,925 201,105
(3) All target values 689,913 539,358 33,881
set t0 4.0
(4) Target rich 4,115,600 3,774,709 278.424
environment for
scaling factor of 0.5
(5) Target poor 4,162,430 4,125,762 277,408
environment
Table 2 - Sensitivity Analysis
2, Target Rich Environment

Target rich environments were created by reducing the number of aircraft present
to fly against the same number of targets in the original data set. The case shown in
Table 2 is for half the original number of aircraft, or a scaling factor of 0.5. Several
target rich environments were produced and results plotted in Figure 3 on the next page
for TIME STRIKE and SimStrike. A scaling factor of 1.0 means the original number of

aircraft present, or the base case.

Any scaling factor less than 1.0 is a target rich

environment, and anything above 1.0 would be target poor, which is not shown in Figure
3 because TIME STRIKE and SimStrike closely agree quantitatively for a scaling factor

of 1.0 and above.

24



4000000 —|

o ——— e —

3000000 —|
o)
E 2000000 —|

1000000 —

l : T
00 05 1.0

Scaling Factor for No. of Aircraft
"Solid Line" = TIME STRIKE; "Dashed Line" = SimStrike

Figure 3 - Comparison of TIME STRIKE and SimStrike for a Target Rich
Environment

25




Figure 3 shows a noticeable difference between results for TIME STRIKE and
SimStrike for a target rich environment, but then rapidly approaching one another as a
scaling factor of 1.0 is approached. The data used to plot Figure 3 is shown in Table 3

a scaling factor of 2.0 is shown in Table 3 for comparison purposes.

below. Although not shown in Figure 3, the data for the target poor environment case of
TIME STRIKE SimStrike
Objective Function | Objective Function SimStrike
__Scaling Factor Value Value | Standard Deviation
0.000 0 0 0
0.010 1,338,622 1,019,691 100,006
0.025 2,362,772 2,217,805 89,532
0.033 2,762,169 2,612,735 75,176
0.050 3,390,982 3,319,477 74,465
0.100 3,823,302 3,449,200 58,398
| 0.200 4,066,308 3,798,582 105,531
| 0.500 4,115,600 3,774,709 278,424
1.000 4,140,022 4,010,561 245,326
3 2.000 4,162,430 4,125,762 277,408

Table 3 - Target Rich Environment Data for Figure 3

3. Proportioning of Sorties Over Time and Restrikes

When TIME STRIKE decides what sorties will be flown in a campaign, it looks
at its constraints and data, and then places a certain number of sorties to be flown by the
various aircraft against the various targets in every day of every period. A portion of the
sorties which have been selected to fly in every day of the campaign are there to account
for restrikes. The extra number within the total allotted due to the restrike requirement is
to exactly account for these restrikes, i.e., all the restrikes will be taken care of in their

26




entirety each day before the aircraft go on to fly sorties against live targets, and no
restrikes will carry over to the next day.

SimStrike does not recognize a certain number of the sorties to be flown on any
particular day as being present solely for restrike purposes, as TIME STRIKE does. How
many sorties will be needed to clear the restrikes is decided randomly, so it is possible
that more or less sorties, if any, will be dedicated to restrikes than were in TIME STRIKE
on any given day of the campaign.

The potential source of difference here lies in the possibility that when SimStrike
is doing restrikes, if a small number of aircraft are flying sorties at low sortie rates and
low EKS values against the restrikes, not all the restrikes may be cleared in a day.
Therefore, there may be some restrikes which carry over to the next day, which could
lead to more or less being done on some particular day in SimStrike than TIME STRIKE
would expect for its circumstances. This situation arises because the new day’s restrikes
in SimStrike would now include carry over restrikes from yesterday which were not
completed.

Experience with SimStrike, however, does show that most restrikes are done on
the day they are encountered, and very few carry over to the next day. For example, if we
look at the detailed statistical output for the first replication at the beginning of the base
case output for SimStrike contained in Appendix B, the total number of restrikes which
carry over from the last day of each period to the first day of the next period is shown in
Table 2 below.

Period Carry-over Restrikes
1 38
2 36
3 34
4 41
5 29

Table 4 - Example of Carry-Over Restrikes

27




The carry-over restrikes shown in Table 2 are the totals over all target types in
each period, and when compared to the total targets of each type present and the total
dead or in repair each period, the quantities in Table 2 represent well less than 1% of
these totals.

C. CONCLUSIONS

The differing results between SimStrike and TIME STRIKE are cause to examine
closer TIME STRIKE’s modeling of reality. Although many estimates are being made,
perhaps within the BDA equations in the optimization model, these hurdles are not
insurmountable. The objective function values obtained by TIME STRIKE and
SimStrike are similar, although the hypothesis they produce the same expected measure
of effectiveness (MOE) is rejected. The sources of difference discussed in the previous
section do not contribute significantly to the differing results, so the source of deviation
must lie elsewhere.

SimStrike was developed to model all the same things TIME STRIKE does, but
to use probabilities where TIME STRIKE uses expectations. As shown in Table 1 in
Chapter 11, these probabilities were applied at the appropriate places where reality comes
into play, while the integrity of other factors such as the distribution of sorties over
periods, kill goals, and the calculation of the objective function value, were maintained
exactly the same as TIME STRIKE. Therefore, somewhere within the many expectations
used by TIME STRIKE for the purposes of optimization lies one or more approximations
which may be too abstract. Thus, it is a matter of identifying and refining one or more of
these expectations which is in order.

28




IV. FUTURE WORK

A. WEATHER

TIME STRIKE currently assumes that weather is known before profiles are
selected for given aircraft types [Ref. 1:p. 12]. Expectations for six weather states are
read in as data and correlated with what weapons and tactics can be used for a given
weather state against a certain target type, then the sorties are assigned. SimStrike uses
the same expectations as data, then as a probability comparison to a uniform random
number to see if there will be an aircraft sortie weather abort given the present weather
state. TIME STRIKE and SimStrike are therefore both relying on the accuracy of the
same forecast, and therefore both miss the true randomness of nature.

A better model might be one in which weather is decided randomly each day. Of
course linear programs do not have random number generators, so this is not an option
for TIME STRIKE. But one could take SimStrike a step further (it would actually be a
giant step in this case) and randomly decide weather on each day, and then pick the
weapons and tactics on a day-by-day basis for available aircraft to fly sorties against
targets. However, this kind of simulation would not read data in from the solution
variables produced by a run of TIME STRIKE, it instead would be generating its own
sorties over time, so it would therefore be a re-work of SimStrike.

B. PROBABILITY DISTRIBUTION FOR RANDOM ROUNDING

Currently, SimStrike uses a uniform random number to determine whether a non-
integer value gets rounded up or down. Using this consistently where rounding is
required means that, over a large number of replications, these rounded values average
out to the non-integer value from TIME STRIKE. This rounding arises for sorties flown,
EKS, and sortie rate values in SimStrike, a uniform random number being used to ensure
SimStrike models TIME STRIKE as closely as possible.

One might argue that this rounding may be better done using a Poisson
distribution if the number of sortiecs flown as read from the file of solution variables
produced by TIME STRIKE are viewed as events occurring over fixed time intervals. In
this case, since the outcome is based on the total number of draws, or sortie occurrences,

29




to be made over time, the rounded values will not necessarily average out as closely to
what their original non-integer values were as in the uniform random number case above.

30




APPENDIX A: PROGRAM LISTING AND DIRECTIONS FOR USE

SimStrike is coded in Turbo Pascal for Windows, but is compatible with Turbo
Pascal for DOS as long as the “Uses WinCrt;” code line is commented out. SimStrike
uses four input data files and produces one output file which can be opened by almost
any spreadsheet application, however, our preference is Excel. Only one of the four data
input files is “homemade™ because it contains only selective data required by SimStrike
which is contained in a much, much larger data input file to TIME STRIKE. The other
three data input files are merely the same ones used by TIME STRIKE, but with the
filename extension changed to make it useable by the Turbo Pascal compiler.

For the output, the user has several options as annotated in the comments within
the main program part of SimStrike. The output can take many forms, very limited or
detailed based on what the user comments out or keeps in, but is set up to provide the
most detailed statistics as listed in this Appendix, with an example output contained in
Appendix B. The very last three lines of any output, however, will be the number of
replications ran, the mean objective function value, and the standard deviation if the
number of replications is greater that or equal to 30.

Before running the program, there is a note in its comments at the very beginning
of the program listing which must be heeded. Since the data segment created by the
program is very large, the default values for the stack and heap sizes for the Turbo Pascal
compiler are not of sufficient sizes. These should be manually set to 15,000 bytes each
by the user before the program is compiled, or a stack overflow runtime error will result.
Setting the stack and heap sizes too large, however, may prevent compilation if the
machine does not have enough memory to support it. A typical 486 or Pentium PC with
16MB of RAM will do a quick job of running SimStrike with a compiler stack and heap
size of 15,000 bytes.

SimStrike has been designed to be as robust as possible, but it is assumed that
only a user somewhat knowledgeable of TIME STRIKE will actually be using it, so it is
biased toward that end. Most terms used in SimStrike are those which would normally
be known by those familiar with TIME STRIKE, and the detailed comments in the
beginning and throughout the program listing are geared towards these users. Also, there
1s not complete data input error trapping, especially associated with some of the more
larger data input files, because it is assumed only meaningful data will be used, and

31




would also cause an especially excessive additional amount of code to be added to an
already very long program.

This Appendix will now describe in detail how to use SimStrike, the program
listing for which can be found on the following pages. It may be helpful to refer to the
program listing as these directions are read. To reinforce the directions, the data input
file “sim2in.dat”, which is used by SimStrike, but nor by TIME STRIKE, is presented
after the program listing. This input file contains specific data from one of the larger
data files used by TIME STRIKE.

Conditions to be set prior to executing the directions for running SimStrike:

e Set the STACK and HEAP sizes of the Turbo Pascal compiler on the machine
on which SimStrike is to be run to 15,000 bytes (minimum) each. This is
needed so the data segment created by SimStrike is accepted by the compiler,
otherwise there will be a stack overflow runtime error. Note: Do not go
overboard with the STACK and HEAP sizes. Setting them too large will
prevent the compiler from compiling if the machine the program is run on
does not have enough memory to support it.

¢ Ensure the simulation program and the data files it will use all reside in the
same directory. The output file will also be placed in this directory when it is
created. Set the Turbo Pascal default directory to this directory if not already
done so.

* Ensure the data input file “sim2in.dat” in SimStrike’s directory contains the
same requisite data (see the listing later in this Appendix for details) as
“stand13.dat” in TIME STRIKE’s “Data” directory.

e Ensure the target values in the data input file “tgtval22.txt” in TIME
STRIKE’s “Data” directory and in the data input file “tgtval22.dat” in
SimStrike’s directory are the same. The “tgtval22.dat” file used by SimStrike
may be a copy of “tgtval22.txxt” used by TIME STRIKE, with file extension
changed, except that the “MRC1.” preceding each target type number must be
deleted before it is useable as an input file to SimStrike. The same
requirements apply to the files “tgtdat22.txt” in TIME STRIKE’s “Data”
directory and “tgtdat22 dat” in SimStrike’s directory, also ensuring all the
target data is the same for both.

o Copy the file “tsvtst.csv” from TIME STRIKE’s “Results” directory to the
directory the simulation program is in. Change its file extension to “.dat”, and
then open it with Microsoft Wordpad (a common application on any PC with

32



any version of Windows installed) and remove the text lines and extra blank
lines preceding each set of numerical data to which they apply. If there are
any extra blank lines at the end of the file, remove these also. Note: Another
application can be used to open and edit “tsvtst.dat” as long as the font is set
to “Courier” or “Courier New”. In either case, make sure to save it when
done editing.

Remember that there is no data input error trapping, so one must pay attention to

the above directions and make sure they are followed exactly so input errors or bad

results do not occur. In most cases it is simply a matter of copying files from one

directory to the next, then just changing the file extension (and removing the “MRC1.”

text in some cases).

Directions for running SimStrike:

If the program will be run via the DOS version of Pascal, then the code line
“Uses WinCrt;” must be commented out. This is the first line of program
code after the initial comments.

Scroll down in the program listing to the constant declarations (code line
“Const”). Here you may set the values of five of the constants used in the
program: the number of replications, the seed for the random number
generator, and three replication output instances. Note: The random number
generator does not have to be seeded. The “Randomize;” code line given in
the main program part can be used instead, which seeds the random number
generator with the system clock on the machine SimStrike is run on, and the
“RandSeed” code line can be commented out. When using the Randomize
function, however, the string of random numbers produced will not be
repeated each time SimStrike is ran. When setting a replication output
instance remember that these will be the instances out of all the replications
which will be output in detailed statistical tabular format. If only one
replication, or none, of these instances are desired to be included in the
output, set the values in the “Const” declaration section to instances which are
higher than the number of replications which are being ran.

Now scroll down to the main program part of SimStrike. Here will be found
several comment blocks, which, among other things, explain how to change
the output into other formats depending on one’s desire. SimStrike “comes
from the factory™, per se, with the most detailed and useful output form,
outputting one statistical tabular replication instance, along with objective
function values for each replication, and the final statistics, all in Microsoft

33




Excel spreadsheet format. The output file which is created is “sim2out.csv”,
and can potentially be opened by other spreadsheet applications which accept
this format.

At this point SimStrike is ready to be run. Be advised that a previous version of
“sim2out.dat”, which may be open for viewing in a spreadsheet application, must be
closed before actually running SimStrike because a runtime error will occur due to the
inability of SimStrike to write to the output file if it is still open. Also, there are detailed
comments at the beginning and throughout the program listing which provide significant
help in interpreting sections of program code and aid in getting it set up for running.

The program listing starts on the next page, and the listing for “sim2in.dat” can be
found on the pages immediately following the program listing.

34




Program Simulation2;

{

Programmer:

Thesis Advisor:

Revision Date:

Purpose:

Notes:

John J. Kosina

Prof. Alan R. Washburn
Operations Research Department
Naval Postgraduate School, Monterey, CA

7/15/97

Monte Carlo simulation used to conduct error analysis
on the Air Force's Time Strike Optimization model
using some modifications to certain variables and data
(explained below) used in objective function 4 to
maximize the weighted sum of TVD. GAMS model is run
in parallel to compare outputs.

(1)

(2

(3)

(4)

"sim2in.dat® data input file must contain data in the form:

1st line:
TVDWGT, GOALWGT

2nd line:
number of periods, number of days in each period

3rd line:
number of aircraft types

Each of following lines up to the total number of AIRCRAFT
TYPES, one line per aircraft type:
aircraft type, number of aircraft for aircraft type starting,
max loss allowed for the aircraft type, sortie rate (sorties
per aircraft per day) for the aircraft type

Next line:
number of target classes

Each of following lines up to the total number of TARGET CLASSES,
one line per target class:
proportion of targets in target class to be killed to achieve
the goal for each time period

Each of following lines up to the total number of TARGET CLASSES,
one line per target class:
objective function penalty for not meeting the time-~scripted
goal for the target class (as given in the data block just
prior to this one) by the end of the period for each time period

Each of following lines up to the total number of TARGET CLASSES,
one line per target class:
targets which belong to the target class

"tgtval22.dat"™ data input file is target values for each target type
by period in which they are killed. These values may be randomly
generated for all the target types as long as the same data values
are used for both the GAMS model and simulation runs.

"tgtdat22.dat™ data input file is target data by distance

band (used to obtain total targets of each type), bda probability,
repair time, percent of killed targets that regenerate. Target
Elements are not used by the simulation. This is the same data as
those used by the GAMS model except that target data by distance
band must be integer (therefore will be the same for both GAMS
model and simulation), and repair times must be integer (also same
for both).

"tsvtst.dat® data input file is conversion of GAMS model output
file "tsvtst.csv"™. This file contains the solution data and variable
values for the last run of the GAMS model.

When the GAMS model is run for a certain data set, the "tsvtst.csv"
file from the GAMS model Results directory should be

copied to the directory containing the simulation and renamed to
"tsvtst.dat". After deleting the short text lines and any extra
blank lines at the beginning of the long lines of numerical data for
each period, data may be used as is. Even though they are real
values seperated by commas, which is not a proper data format for
Turbo Pascal, this simulation has a Procedure which effectively

35




(5

(6

(7

(8

)

)

)

picks out the pertinent data and converts them to either integer
or real values based on the use.

Pertinent data from this file which is stored and used by the
simulation is: time period, aircraft type flying sorties, target
type sorties are flown against, EKS per sortie, probability of no
weather aborts (NABORT) for the particular sorties, attrition per
sortie, and sorties flown.

All data is used "as is", with the exception of sorties flown, which
are reported as real valued quantities by the GAMS model. For this
simulation we are interested in integer values (since you can only
fly a whole number of sorties in real life!), therefore, after the
real number of sorties flown is uniformly distributed over the current
period, another Procedure is used to round this either up or down,
based on a U[0,1] random number, to an integer value. The integer
number of sorties is then the quantity used by the simulation. When a
kill is made by a sortie, the same is done to the EKS value for

that particular sortie since you can only kill an integer number

of targets in real life!

Output will be the objective function value after a large number

of replications (see NUMBERREPS below in CONST declarations). Extra
output statistics can also be obtained by removing comment brackets
from those places noted in the Main Program part of the Simulation
below. Output is sent to "sim2out.csv"™, which can be viewed in
Excel spreadsheet format. There are code options to allow output to
go to the computer screen also.

Data which should be the same as the GAMS model LP is:

time period

aircraft types

target types

EKS per sortie

probability of no weather aborts

attrition per sortie

number of aircraft starting for each type (integer)
max loss allowed for each aircraft type (integer)
sortie rate for each aircraft type

TVDWGT

GOALWGT

number of periods

number of planning cycles (days) in each period
kill goals for each target class

number of targets starting for each type (integer)
penalties for not achieving kill goals for each target class
target class-target correspondence

repair proportion/probability for each target type
probability of correct BDA for each target type

Probabilities used in the simulation are (GAMS model data or
variable name correspondence, if any, is shown in parentheses next
to each):

aircraft attrition (ATTR)

prob. of no weather abort (NABORT)

target BDA prob., i.e. prob. of correct BDA for a target (BDAPROB,
B (as used in target regeneration and BDA equations)}

prob. of incorrect BDA for a target (NB (= 1 — B as used in target
regeneration and BDA equations))

prob. the target is repairable after a strike (REPROP, Pr (as used
in target regeneration and BDA equations))

prob. a target is not repairable (NPr (= 1 - Pr as used in target
regeneration and BDA equations))

prob. a target regenerates in the next planning cycle (Pc (as used
in target regeneration and BDA equations))

prob. a target does not regenerate in the next planning cycle (NPc
(= 1 - Pc as used in target regeneration and BDA equations))

conversion of real no. of sorties flown to integer (x)

conversion of real valued sortie rates to integer (SRTRTPER)

conversion of real no. of targets killed from associated EKS
to integer (EKS)

choice from which category restrikes will come

Output generated by this simulation to be compared with LP:

mean objective function value for weighted sum of target value

36




destroyed (TVD) over a large number of replications

Additional output generated by simulation:

standard deviation for mean objective function value
number of replications done

(9) Data input files are "simlin.dat", "tgtval22.dat”,
"tgtdat22.dat", and "tsvtst.dat”™. Output file is
"sim2Zout.csv”.

(10) Note that the MAXLOSS values in the GAMS model input file
"standl3.dat™ must also be rounded to integer values so the GAMS
model and simulation both use the same data. This is also true of
the number of aircraft and targets of each type in their respective
data input files.

(11) There is no data input error trapping so data in input files
must be entered correctly and also be meaningful for proper
output to be generated. Basically, a user knowledgeable of the
GAMS model and simulation is assumed here!

(12) *** IMPORTANT! *** Set the STACK and HEAP sizes of the compiler

on the machine this is run on to 15,000 bytes (minimum) each.
This is needed so the data segment created by this program is
accepted by the compiler, otherwise there will be a stack overflow
runtime error. Note: Don't go overboard either! Setting the
STACK and HEAP sizes too large will prevent the compiler from
compiling if the machine this is run on does not have enough
memory to support it.

}

Uses WinCrt;

Const
NUMBERREPS = 1000; {set number of replications here}
SEEDFORRANDNUMS = 999; ({seed for random numbers so they are the same each time if needed}
MAXNUMPERIODS = 7; {max number of periods}
MAXNUMACFTTYPES = 10; {max number of aircraft types expected to be encountered}
MAXNUMTGTTYPES = 87; {max number of target types}
MAXNUMTGTCLASSES = 10; {max number of target classes}
MAXNUMDISTBANDS = 7; {max number of distance bands}
REPOUTL = 1; {replication output instance}
REPOUT2 = 1057; {replication output instance}
REPOUT3 = 1092; {replication output instance}
Type

PeriodIndexRange = 1..MAXNUMPERIODS;

AcftTypeIndexRange = 1..MAXNUMACFTTYPES;

TgtTypeIndexRange = 1..MAXNUMTGTTYPES;

TgtClassIndexRange = 1..MAXNUMIGTCLASSES;

AcftTypeArray = Array[AcftTypeIndexRange] Of Integer;

SortieRateArray = Array[AcftTypeIndexRange} Of Real;

TgtValueArray = Array{TgtTypelndexRange, PeriodIndexRange] Of Real;
TgtKillArray = Array[TgtTypelIndexRange, PeriodIndexRange] Of Integer;
TgtRealTypeRArray = Array[TgtTypeIndexRange] Of Real;

TgtIntTypeArray = Array{TgtTypeIndexRange] Of Integer;

KillGoalArray = Array[TgtClassIindexRange, PeriodIndexRange] Of Real;
TgtClassTgtArray = Array[TgtClassIndexRange, TgtTypeIndexRange] Of Integer;
TgtClassArray = Array{TgtClassIndexRange) Of Integer;

StringType = String({10];

Function UniformProb: Real;

{
A uniform [0,1] random number generator available for any procedure or
function which requires a U[0,1] probability.

Pre: None.
Post: U[0,1] probability.
}
Begin {Function UniformProb}
UniformProb := Random;
End; {Function UniformProb}

Function Binomial (Num: Integer;
Prob: Real): Integer;

Determines the number of possibilities from a certain number of samples, Num, which
meet the condition U[0,1] <= Prob, where Prob is a particular probability from

37




this Function.

Pre: Num = total number of samples (must be > 0); Prob = probability for a U[0,1]
to be compared against.
Post: Binomial = number out of the total for which U[0,1] <= Prob is true.
}
Var
I, Count: Integer;

Begin ({Function Binomial}

Count := 0;
For I := 1 To Num Do
Begin
If (UniformProb <= Prob) Then
Begin
Count := Count + 1;
End; {If}

End; {For}
Binomial := Count;
End; {Function Binomial}

Function GetInteger (Num: Real): Integer;

{
Converts a Real number to an Integer number by rounding either up or down based
on a U[0,1] random number.

Pre: Num = Real number

Post: GetInteger = Integer number
}
Var

Result: Integer:;

Begin ({Function GetInteger}
If (UniformProb <= Frac(Num)) Then
Begin

Result := Trunc(Num) + 1;
End
Else
Begin
Result := Trunc{(Num);
End; ({If}
GetInteger := Result;
End; {Function GetInteger}

\
|

any particular distribution desired which was calculated previously and passed to
|

!

|

\

| Function Raise (Base: Real;

] Exponent: Integer): Real;

]

{

| Raises the Base to the Exponent power.

Pre: Exponent > 0

Post: Raise = Base to the Exponent power
}
Var

Count: Integer;

Product: Real;

Begin {Function Raise}
Product := 1;
For Count := 1 To Exponent Do
Begin
Product := Product * Base;
End; {For}
Raise := Product;
End; {Function Raise}

Procedure GetRealNumber (St: StringType:s
Var x: Real);
{
Converts a string to it's real valued number. Only handles positive numbers, and
if the number will be < 1, there must be a leading zero before the decimal point,
e.g. St = '0.0394"' vice St = '.0394".

Pre: St = a string of type StringType.

Post: x = the real valued quantity imbedded in St.
}
Var

I: Integer;

38




Numl, Num2: Real;
OnPeriod: Boolean;
Stl, St2: StringType;

;
;
:= True;
1

For I := To Length(St) Do
Begin
If ((St(I] <> '.")} And (OnPeriod)) Then
Begin
Stl := Stl + St[I];
End
Else
Begin
If OnPeriod Then
Begin
OnPeriod := False;
End
Else
Begin
St2 = St2 + St[I};
End; ({If}
End; {If}
End; {For}
For I := 1 To Length(Stl) Do
Begin
Numl := Numl + (Ord(Stl1[I}) -~ 48) * Raise (10, (Length(Stl) - I));
End; ({For}
If {Length(St2) > 0) Then
Begin
For I := 1 To Length(St2) Do
Begin
Num2 := Num2 + (Ord(St2{I}) - 48) * Raise (10, (Length(St2) - I));

End; {For}
Num2 := Num2 / (Raise (10, Length(St2)));
End; ({If}
X := Numl + Num2;
End; {Procedure GetRealNumber}

Function GetTargetClass (Tgt: Integer;
TgtClassTgt: TgtClassTgtArray;
TgtsInClass: TgtClassArray;
NumTgtClasses: Integer): Integer;

{
For a given target type, determines which target class it belongs to.

Pre: Target type in question, térget class data arrays, and number of target
Post: GetTargetClass = Target class the target belongs to.

}

Var
Class, Target, Temp: Integer;

Begin ({Function GetTargetClass}
For Class := 1 To NumTgtClasses Do

Begin
For Target := 1 To TgtsInClass{Class] Do
Begin
If (TgtClassTgt[Class,Target] = Tgt) Then
Begin

Tenp := Class;
Target := TgtsInClass[Class];
Class := NumTgtClasses;
End; {If}
End; {For}
End; ({For}
GetTargetClass := Temp;
End; ({Function GetTargetClass}

Procedure RunSimulation (NumDays, NumAcft, MaxLoss: Integer;
SortieRate: Real;
Var Acftlost: Integer;
TotTgts: Integer;
TgtVal, Goal: Real;
Eks, Nabort, Attr, x: Real;

39

classes.




{
!
|
|

Var TotSortiesFlown: Integer;

Pr, NPr, Pc, NPc, B, NB: Real;

Var LiveN, DeadN, RegenN: Integer;

Var LiveR, DeadR, RegenR, deltaTgtsKilled: Integer:;
Var TempTvd: Real);

For the given mission data, runs the simulation and determines the Target Value

Destroyed (TVD). This Procedure is run for one aircraft type, flying a certain profile,
against a particular target type, with sorties distributed uniformly over one period.

The simulation loops through the days in the period and the number of aircraft in

the aircraft type until all sorties are flown, OR all the targets of the target type

are killed, OR the max number of the aircraft type are lost, OR the kill-goal for the
period has been achieved. It is important to note that this Procedure is run once for
each line of data in "tsvtst.dat". It essentially re-flies the sorties the GAMS model
flew and determines the outcome randomly for later comparison with the GAMS model results.

Pre: See the parameters passed to the Procedure above.

Post: For a particular engagement flown, updates aircraft of the aircraft type lost,
targets of the target type killed, future restrikes and repairable targets,
future regeneration of targets, and total TVD.

Variable definitions:

**+ For parameters passed to the Procedure, see Main Program variable definitions as
the same names for them were used.

AcftKilled - stores a Boolean value for whether or not an aircraft is attrited.

AcftWxAbort ~ stores a Boolean value for whether or not an aircraft experiences an

in-flight weather abort.

delta - used generically to determine an incremental change in some integer variable.

deltaB - used to store the number of kills from the total amount made as a result of

a regular strike based on the probability ®B™ which will go to the
"non-restrikeable” category (become either DeadN or RegenN).

deltaBNPr - used to store the number of kills from deltaB which will become DeadN

based on the probability "Npr”.

deltaBPr - used to store the number of kills from deltaB which will become RegenN

based on the probability "Pr°®.

deltaNB - used to store the number of kills from the total amount made as a result of

a regular strike based on the probability "NB™ which will go to the
"restrikeable™ category (become either DeadR or RegenR).

deltaNBNPr ~ used to store the number of kills from deltaNB which will become DeadR

based on the probability "NPr™.

deltaNBPr - used to store the number of kills from deltaNB which will become RegenR

based on the probability "Pr".

deltaPd - used to store the number of periods ahead of the current one that a target

will be regenerated in.

I - counter variable for loops.

InRegularStrikePhase - boolean variable which indicates whether the regular strike phase
has been entered or not in the current day so as to prevent the
restrike phase from occurring more than once per day.

K - counter variable for loops.

MaxSortiesToday -~ the integer max number of sorties which may be flown today based on
sorties per day as derived from the sorties flown for the period
read in from "tsvtst.dat”.

NumTgtsKilled - integer number of targets killed by a successful sortie based on EKS.

PropKilled - cumulative proportion of targets of the target type killed.

RTypeTotal ~ total number of targets in all restrike categories which are currently

subject to restrike.

SortiesFlownToday - counter to keep track of the sorties flown on the particular day
for comparison to see if the max sorties for the day have been
flown.

SortiesPerAcftPerDay - sortie rate for each aircraft of the aircraft type.

SortiesPerDay - sorties per day, uniformly distributed over the period.

SortiesToFly - the sorties which will actually be flown on a particular day.

Start ~ the starting point for the For loop over the number of aircraft of the aircraft

type.

TempPropKilled ~ temporary proportion of the total number of targets killed; calculated
in advance to compare to the kill-goal before kills are actually applied
to the LiveN type targets.

WhichRType -~ random variable to aid in deciding from which restrike category the kills

held in the variable NumTgtsKilled will be applied to.

Notes for below:

(1) This uniformly distributes the number of sorties to be flown over the period.
The integer number of sorties actually flown on any day is found using

40




(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Var

SortiesPerDay in the Function GetInteger. SortiesPerAcftPerDay is the sortie

rate for each aircraft of the particular aircraft type.

While there are sorties left to fly in this day, and the max pumber of aircraft
have not been lost, and the total amount of targets in this type have not been
killed, and the kill-goal for the period has not been met, sorties may still be
flown.

If an aircraft is attrited, it is lost, and therefore any sorties it had left to
fly are also lost.

If an aircraft is not attrited and does not experience an in-flight weather abort,
it is expected to make kills based on EKS. However, a sortie cannot kill more
targets than the total amount of the target type present (common sense!),
therefore this is also accounted for and the number of kills from the sortie
adjusted if necessary. Also, a sortie is restricted by the kill-goal for this
target type for the particular period, kill goals being cumulative across the
periods. The sorties may kill up to the goal, under the goal, but not over the
goal.

The target value credited is for every target of this target type which is dead or
in repair over all periods up through the current one, up to the current kill-goal.
While there are mis-classified targets scheduled for restrike due to bad BDA in
the previous planning cycle, and there are sorties left to fly in this day, and
the max number of aircraft have not been lost, and the max number of sorties for
the day have not been flown yet, these restrikes must be done first before other
targets are engaged. Note, an aircraft doing restrikes is still subject to
attrition.

The proportion killed are the dead targets plus targets in repair divided by the
total number of targets of the target type starting. It is calculated this way
because targets in repair where initially killed to get them into that category,
and are recognized as dead until they reappear. This is the quantity which is
compared to the kill-goal for the target type. Note: There is no chance for
division by zero in the calculation of the proportion since the denominator
remains unchanged throughout the entire program run. The quantity in the
denominator will always contain the total number of targets of the target type
which started the program run, the total amount killed being kept track of by
other variables and compared to the original number present to determine the
proportion killed. This is convenient calculation wise since kill-goals are
cumulative over time. Also, this simulation routine is only run for valid
sortie~target engagement combinations as determined by the GAMS model, so the
quantity in the denominator will always be a quantity greater than zero.

Any targets under repair but restrikeable will either become dead forever or under
repair and NON-restrikeable. Any targets which are live and restrikeable are
targets which have just came out of repair but are immediately restruck, and then
become either dead forever or under repair and NON-restrikeable.

This If..Then represents the case in which all restrikeable targets have been
restruck, but the last restrike sortie flown resulted in overkill, i.e., the
number of targets killed based on the sortie's EKS was greater than the number

of targets left to restrike. Therefore, this overkill is applied to live targets
as a regular strike, where it is assumed that live targets existed in the

vicinity of the restrikes when they occured, however, the overkill is applied
without the risk of aircraft attrition or weather abort since these were already
checked for when the sortie occured.

Note that an aircraft which suffers an in-flight weather abort is still subject to
attrition, thus explains the position of this conditional check in the overall
I1f..Then structure.

Each surviving aircraft of the aircraft type gets a chance to fly the sorties per
day, in accordance with their sortie rate, until all the days are done or sorties
have been flown, or the kill goal is reached. The total sorties which may be flown
by all aircraft for each day, however, is capped at a maximum derived from the
sorties flown from "tsvtst.dat". When the limit has been reached, we skip to

the next day.

Any dead and restrikeable targets, i.e., mis-BDA'd, will, with probability 1.0,
become dead forever when restruck because their "true identity"™ becomes known

upon restrike.

The current sortie on a restrike mission was not attrited and did not experience a
weather abort, so the category of targets it will restrike will be decided randomly
with the category having the most number of restrikeable targets having the higher
probability of being picked.

A temporary proportion of the total targets killed is calculated in advance before
the current value of NunTgtsKilled is applied to the LiveN type targets so it can
be predicted whether or not applying all the kills will cause the kill-goal to be
exceeded. If the kill-goal would be exceeded, NumTgtsKilled is successively
decremented by 1 until either the predicted value of PropKilled does not exceed the
kill~goal, or NumTgtsKilled equals 0.

SortiesToFly, NumTgtsKilled, deltaB, deltaNB, deltaBPr, deltaBNPr: Integer;
I, K, deltaPd, delta, deltaNBPr, deltaNBNPr, RTypeTotal: Integer;
SortiesFlownToday, MaxSortiesToday, Start: Integer;

PropKilled, SortiesPerDay, SortiesPerAcftPerDay, WhichRType: Real;

41




TempPropKilled: Real;
AcftKilled, AcftWxAbort, InRegularStrikePhase: Boolean;

Begin {Procedure RunSimulation}
SortiesPerDay := x / NumDays; {** Note 1 **}
SortiesPerAcftPerDay := SortieRate; {** Note 1 **}
AcftKilled := False;
AcftWxAbort := False;
Start := Acftlost + 1;
For I := 1 To NumDays Do
Begin

*+¥%+% Regeneration Phase **#x%

If (RegenN > 0) Then

Begin
delta := Binomial (RegenN, Pc);
LiveN := LiveN + delta;
RegenN := RegenN - delta;

End; ({If}
If (RegenR > 0) Then
Begin
delta := Binomial (RegenR, Pc);
LiveR := LiveR + delta;
RegenR := RegenR - delta;
End; {If}
{ PropKilled := DeadN / TotTgts;} {** debug alternative to next line **}
PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts; ({** Note 7 *+}

MaxSortiesToday := GetlInteger (SortiesPerDay);
SortiesFlownToday := 0;
InRegularStrikePhase := False;
For K := Start To NumAcft Do ({** Note 11 **}
Begin
SortiesToFly := Getlnteger (SortiesPerAcftPerDay);

**¥4k Restrike Phase *¥*tx
}
NumTgtsKilled := 0;
While ((SortiesToFly > 0) And (Acftlost < MaxLoss) And ((LiveR > 0) Or (DeadR > 0) Or
(RegenR > 0)) And (SortiesFlownToday < MaxSortiesToday) And
(Not InRegularStrikePhase)) Do {** Note 6 **}

| Begin

; SortiesFlownToday := SortiesFlownToday + 1;

| SortiesToFly := SortiesToFly - 1;

| TotSortiesFlown := TotSortiesFlown + 1; {** Data purposes only **}
AcftKilled := (UniformProb <= Attr);
If AcftKilled Then
Begin

Acftlost := Acftlost + 1;
SortiesToFly := 0; ({** Note 3 **}
End
Else
Begin
AcftWxAbort := (UniformProb > Nabort); {** Note 10 **}
If (Not AcftWxAbort) Then
Begin
NumTgtsKilled := GetInteger (Eks); {** Note 4 **}
While ((NumTgtsKilled > 0) And ((LiveR > 0) Or (DeadR > 0) Or (RegenR > 0))) Do
Begin {** Note 13 *¥*}
RTypeTotal := LiveR + DeadR + RegenR;
WhichRType := RTypeTotal * Random;
If ((WhichRType <= LiveR)} And (LiveR > 0)) Then
Begin
If (LiveR <= NumTgtsKilled) Then {** Note 8 **}
Begin
NumTgtsKilled := NumTgtsKilled - LiveR;
delta := Binomial (LiveR, Pr};
LiveR := LiveR - delta;

RegenN := RegenN + delta;
DeadN := DeadN + LiveR;
LiveR := 0;

End

Else

Begin

LiveR := LiveR -~ NumTgtsKilled;

delta := Binomial (NumTgtsKilled, Pr);
NumTgtsKilled := NumTgtsKilled - delta;
RegenN := RegenN + delta;

42




DeadN := DeadN + NumTgtsKilled;
NumTgtsKilled := 0;

End; [({If}
End
Else If ((WhichRType <= DeadR) And (DeadR > 0)) Then
Begin
If (DeadR <= NumTgtsKilled) Then {** Note 12 **}
Begin

NumTgtsKilled := NumTgtsKilled - DeadR;
DeadN := DeadN + DeadR;
DeadR := 0;
End :
Else
Begin
DeadR := DeadR ~ NumTgtsKilled;
DeadN := DeadN + NumTgtsKilled;
NumTgtsKilled := 0;
End; {If}
End
Else
Begin
If (RegenR > 0) Then {** Note 8 **}
Begin
If (RegenR <= NumTgtsKilled) Then
Begin
NumTgtsKilled := NumTgtsKilled - RegenR;
delta := Binomial (RegenR, Pr);
RegenR := RegenR -~ delta;
RegenN := RegenN + delta;
DeadN := DeadN + RegenR;
RegenR := 0;
End
Else
Begin
RegenR := RegenR - NumTgtsKilled;
delta := Binomial (NumTgtsKilled, Pr);
NumTgtsKilled := NumTgtsKilled - delta;
RegenN := RegenN + delta;
DeadN := DeadN + NumTgtsKilled;
NumTgtsKilled := O;
End; ({If}
End; {If}
End; {If}
End; {While}
End; {If Not AcftWxAbort}
End; {If AcftKilled}
End; {Main While loop for Restrike Phase}

*+4+% Roqular Strike and Redistribution of Kills Phase %%+

e e e e e ke ek ok ok

The If..Then below allows any left over "kills" in the variable NumTgtsKilled which
were not needed to complete all the restrikes from the restrike phase above to be
applied to LiveN targets, if any. Remove the single comment brackets in column 1
ONLY if you want to use this code. ** Note ** This is not consistent with how Time
Strike allocates sorties across time accounting for restrikes, but can be used for

exploratory purposes by the user.
e e e e e K e e e e

If ((LiveR = 0) And (DeadR = 0) And (RegenR = 0) And (NumTgtsKilled > 0) And
(LiveN > 0)) Then {** Note 9 **}

Begin

TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts;

While ((TempPropKilled > Goal) And (NumTgtsKilled > 0)) Do {** Note 14 ¥*}

Begin
NumTgtsKilled := NumTgtsKilled - 1;
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts;

End; {While}
If (NumTgtsKilled > 0) Then
Begin
If (LiveN <= NumTgtsKilled) Then
Begin
deltaTgtsKilled := deltaTgtsKilled + LiveN;
deltaB := Binomial (LiveN, B):
deltaNB := LiveN - deltaB;
LiveN := 0;
End

43




Else
Begin
deltaTgtsKilled := deltaTgtsKilled + NumTgtsKilled;
deltaB := Binomial (NumTgtsKilled, B):
deltaNB := NumTgtsKilled - deltaB;
LiveN := LiveN - NumTgtsKilled;

End; {If}
If (deltaB > 0) Then
Begin

deltaBPr := Binomial (deltaB, Pr);
deltaBNPr := deltaB ~ deltaBPr;
RegenN := RegenN + deltaBPr;
DeadN := DeadN + deltaBNPr;

End; ({If}
If (deltaNB > 0) Then
Begin

deltaNBPr := Binomial (deltaNB, Pr);
deltaNBNPr := deltaNB - deltaNBPr;
RegenR := RegenR + deltaNBPr;
DeadR := DeadR + deltaNBNPr;
End; ({If}
End; ({If}

End; ({If}

PropKilled := DeadN / TotTgts; {** debug alternative to mext line **}
PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts; {** Note 7 *x
While ((SortiesToFly > 0) And (AcftLost < Maxloss) And (LiveN > 0) And

(DeadN < TotTgts) And (PropKilled < Goal) And
(SortiesFlownToday < MaxSortiesToday)) Do {** Note 2 **}
Begin
InRegularStrikePhase := True;
SortiesFlownToday := SortiesFlownToday + 1;
SortiesToFly := SortiesToFly - 1;
TotSortiesFlown := TotSortiesFlown + 1; {** Data purposes only **}
AcftKilled := (UniformProb <= Attr);
If AcftKilled Then
Begin
AcftlLost := Acftlost + 1;
SortiesToFly i= 0; {** Note 3 **}
End
Else
Begin
AcftWxAbort := (UniformProb > Nabort); {** Note 10 **}
If (Not AcftWxAbort) Then

Begin
NumTgtsKilled := GetInteger (Eks); {** Note 4 **}
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts;
While ((TempPropKilled > Goal) And (NumTgtsKilled > 0)) Do {[** Note 14 **}
Begin

NumTgtsKilled := NumTgtsKilled - 1;
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts;
End; {While}
If (NumTgtsKilled > 0) Then
Begin
If (LiveN <= NumTgtsKilled) Then
Begin
deltaTgtsKilled := deltaTgtsKilled + LiveN;
deltaB := Binomial (LiveN, B);
deltaNB := LiveN - deltaB;
LiveN := 0;
End
Else
Begin
deltaTgtsKilled := deltaTgtsKilled + NumTgtsKilled;
deltaB := Binomial (NumTgtsKilled, B);
deltaNB := NumTgtsKilled - deltaB;
LiveN := LiveN - NunTgtsKilled;
End; (If}
If (deltaB > 0) Then
Begin
deltaBPr := Binomial (deltaB, Pr);
deltaBNPr := deltaB ~ deltaBPr;
RegenN := RegenN + deltaBPr;
DeadN := DeadN + deltaBNPr;
End; ({If}
If (deltaNB > 0) Then
Begin
deltaNBPr := Binomial (deltaNB, Pr);
deltaNBNPr := deltaNB - deltaNBPr;

44



RegenR := RegenR + deltaNBPr;
DeadR := DeadR + deltaNBNPr;
End; {If}
End; ({If}
PropKilled := DeadN / TotTgts;} {** debug alternative to next line **}
PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts; {** Note 7 +**}
End; {If Not AcftWxAbort}
End; ({If AcftKilled}
End; ({While loop for Regular Strike and Redistribution of Kills Phase}
If (SortiesFlownToday >= MaxSortiesToday) Then {** Note 11 **}

Begin
K := NumAcft;
End; {If}

End; {For loop for aircraft}
Start := Acftlost + 1;
End; {For loop for days}
TempTvd := TgtVal * (DeadN + RegenN + DeadR + RegenR); {** Note 5 **}

End; {Procedure RunSimulation}

Procedure GetPdiffValues (NumPeriods, NumTgtTypes, NumTgtClasses: Integer;

}

TgtsDeadOrInRepair: TgtKillArray;
TotTgts: TgtIntTypeArray;
TgtClassTgt: TgtClassTgtArray;
TgtsInClass: TgtClassArray;

Goal: KillGoalArray;

Var Pdiff: TgtValueArray);

Calculates the pdiff values (proportion of kills below the goal for each target type
in each period) to be used in the objective function calculation. Note that there

are no targets present of some target types, so sorties are not flown against them.
Therefore, division by zero must be accounted for below. Also, if there are targets
of a target type present, but no kills were made, pdiff is merely set to the kill-goal
for the target class, i.e., max penalty possible is charged for the case-in-point.

Pre: Number of periods, target types, and target classes present. Cumulative number
of targets of each type dead or in repair each period by period, total targets of
each type which were present/alive at the start of the program run. Target
Class-Target correspondence data along with the number of target types in each
class. Kill goals for each target class in each period.

Post: Pdiff array = proportion of kills below the goal for each target type in
each period

Var

Pd, Tgt, Class, I, TotTgtsKilled: Integer;
PropKilled: Real;

Begin {Procedure GetPdiffValues}

For Pd := 1 To NumPeriods Do
Begin
For Tgt := 1 To NumTgtTypes Do
Begin
Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses);

e o e ok e ke ok e ke
Total targets killed (actually dead or in repair) are calculated with a For loop here
because the cumulatives used in the proportion calculation below must be for only the

target type up through the current period of the outer loop.
ok ke ok ek ko

TotTgtsKilled := 0;
For I := 1 To Pd Do
Begin
TotTgtsKilled := TotTgtsKilled + TgtsDeadOrInRepair[Tgt,I];
End; {For}
If (TotTgts[Tgt] <> 0) Then
Begin
PropKilled := TotTgtsKilled / TotTgts{Tgt];
End; ({If}
If ((TotTgts[Tgt) <> 0) And {(PropKilled <= Goal[Class,Pd])) Then
Begin
PAiff[Tgt,Pd] := Goal[Class,Pd] -~ PropKilled;
End
Else
Begin
Pdiff([Tgt,Pd] := 0.0;
End; ({If}
End; {For}
End; {For}

45




End; ({Procedure GetPdiffValues}

Function CalculateObjFcnValue (NumPeriods, NumTgtTypes, NumTgtClasses: Integer;

!

TgtClassTgt: TgtClassTgtArray:
TgtsInClass: TgtClassArray;
Tvd: Real;

Ppen: KillGoalArray;

Pdiff: TgtValueArray;

TvdWgt, GoalWgt: Real): Real;

Calculates objective function value for maximizing the weighted sum of TVD. The
Procedure does not actually maximize the value, it calculates the objective function
value based on TVD gained for a replication of the simulation for which sorties were
already assigned by the GAMS model, but the results of the sorties were decided
randomly by this simulation. After the random results of the sorties, kill~-goal
achievement was determined, and then the resultant values for cumulative TVD collected
and the pdiff values are passed to this Procedure, then the calculation proceeds as

in the objective function contained in the GAMS model.

Pre: Number of periods, target types, and target classes present. Target
Class-Target correspondence data along with the number of target types in
each class. The target value destroyed which has been credited for the current
replication of the simulation. The objective function penalty for not meeting
the kill-goal for each target class in each period. The objective function
weights for TVD and goal achievement.

Post: CalculateObjFcnValue = Weighted sum of TVD

Var

Pd, Tgt, Class: Integer;
Penalty: Real;

Begin {Function CalculateObjFcnValue}

Penalty := 0.0;
For Pd := 1 To NumPeriods Do
Begin
For Tgt := 1 To NumTgtTypes Do
Begin
Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses);
Penalty := Penalty + (Ppen([Class,Pd] * PAiff[Tgt,Pd]);
End; ({For}
End; {For}
CalculateObjFcnValue := (TvdWgt * Tvd) + (GoalWgt * Penalty):

End; {Function CalculateObjFcnValue}

{

S e o e ke e ok de ok e ok ke ke e sl ke T sk e ke sk ok sk ke e ke ke sk ok ok e e ok ke ok e S e b e sk sk e ke ok o ke e e ok e ok e e S ok o ok e e e o ok ke e ke ok ok ke e
e e e vk e e e ek ek ok ke ko ke e ke e ke ke ok Kok ke Main Program e e ke de g de e e e de ke ke ke ok ok ke ok sk ok e ok e e e ok e e
e e s o e e e e e ke e e e Tk e b ol S sk e e ke 3k e e ok ek ke ok e de ke ok ke Sk e e e ke ke e b ke ke ok ok e b e ok ok e ok e ok ke e o ok ek ek ke ke

The Main Program is used to assign input and output files, open and close

input and output files, input all the necessary data from the input files,

and output the data to the output file. The Main Program is the only part

of the simulation which reads and outputs data, the other Procedures and
Functions are the ones which manipulate the data with regards to actually
performing the simulation. This prevents having to instantiate too many

array types when passing data from the Main Program to a Procedure or Function,
which in turn would use up much too much memory since the array types defined
are quite large!

The only actual calculations done by the Main Program are for intermediate
values which must be output for debug purposes or statistical data for the user.
Comments are imbedded within the Main Program code below which indicates which
lines should be kept or commented out based on user preference for the output
generated by the debug lines of code, or to add or subtract output as the user
sees fit.

Main Variable definitions:

Acft - counter variable for aircraft types.

Acftlost - array of the cumulative number of aircraft lost for each aircraft type over

the whole simulation run.

AcftType - array of aircraft types actually flying sorties.

Attr - losses per sortie (probability of attrition per sortie in the range [0,1]).

B - probability of correct BDA for a target (B = BdaProb[Tgtl).

BdaProb - array of the BDA probabilities for each target.

BeforeTgtsDeadOrInRepair -~ the number of targets of the target type dead or in repair
just before the simulation routine is run for the next
engagement against the target type.

Ch - a Char type variable used for reading data from "tsvtst.dat™ character by

46



character to get the real valued quantities and disregard the commas. Used
in conjunction with the variable 'St' as defined below.

Class =~ counter variable for target classes.

DataValRead - counter variable which keeps track of how many data values have been
read in "tsvtst.dat" to determine which simulation variable to store
the quantity in.

DeadN - array of the current number of dead targets which ARE NOT restrikeable for

each target type (dead forever).

DeadR - array of the current number of dead targets which ARE restrikeable for each
target type; the only possibility for these are to become dead forever (see
DeadN above) when restruck.

deltaTgtsKilled - difference between total targets of the target type killed after the

simulation routine is run and BeforeTgtsKilled, i.e., the number of
targets of the target type killed during the last particular run of
the simulation routine.

DistBandNum -~ counter variable for distance band numbers.

Eks ~ expected kills per sortie for an aircraft type in a particular period.

Goal - array of the proportion of targets in each target class to be killed to

achieve the goals in each period.

GoalWgt - objective function weight for goal achievement.

I - counter variable for For loops.

LiveN - array of the current number of live targets which ARE NOT restrikeable for
each target type.

LiveR -~ array of the current number of live targets which ARE restrikeable for each
target type; these represent the number of targets which have just come out
of repair in the planning cycle but may be restruck and returned to repair
(see RegenN below), or become dead forever (see DeadN above).

MaxLoss - array of the max loss allowed of each aircraft type.

Nabort -~ probability there is no weather abort in flight for a particular aircraft

type flying sorties against a particular target type.

NB - probability of incorrect BDA for a target (NB =1 - B).

NPc - probability a target does not regenerate in the next planning cycle (NPc = 1 - Pc).

NPr - probability the target is not repairable after a strike (NPr = 1 - Pr).

NumAcft - array of the number of aircraft for each aircraft type starting.

NumAcftTypes ~ number of aircraft types which will fly sorties.

Number - temporary storage location for a real valued number.

NumDays - number of days (planning cycles) per period.

NumPeriods ~ number of periods the simulation is run over.

NumTgtClasses - number of target classes.

NumTgtsInBand - temporary storage location for the read in number of targets in a

particular distance band.

NumTgtTypes - number of target types encountered in "tgtval22.dat”™.

Pc - probability a target regenerates in the next planning cycle.

Pd - counter variable for periods.

Pdiff - array of proportion of kills below the class goal for a particular target in
a particular period.

Ppen - array of objective function penalties for not meeting time-scripted goals

for a target class by the end of a particular period {(as contained in the
Goal array).

Pr - probability the target is repairable after a strike.

RegenN - array of the current number of repairable targets which ARE NOT restrikeable
for each target type.

RegenR - array of the current number of repairable targets which ARE restrikeable for
each target type; these may regenerate and become LiveR or remain RegenR
during the regeneration phase, and then any RegenR may become RegenN or
DeadN during the restrike phase.

RepProp - array of the percent of killed targets that regenerate for each target;

this is actually treated as a probability of repair in the Simulation.

RepTime - array of the repair times for each target (repair times are in days).

SimInFile (1~4} - files to get input data from.

SimOutFile - file to send output data to.

SortieRate - array of sortie rates (sorties per aircraft per day) for each aircraft

type.

St - string type variable used for storing data read from "tsvtst.dat™ so the real
valued quantities can be picked out of the lines of data since there are
imbedded commas as a result of the GAMS model output.

StdDev - the standard deviation of the TVD obj fcn values found over the number of

replications performed.

Sumv - sum of objective function values calculated for each replication of simulation.

SumXl - holds the sum of the x(i}”2 terms for the standard deviation calculation.

SumX2 - holds the (sum of x(i))"2 term for the standard deviation calculation.

Templ - temporary storage location for a Real value when reading in data.

Temp2 - temporary storage location for a Real value when reading in data.

TenpSumTgts -~ temporary storage location for summing number of targets as the number
in particular distance bands is read in.

TenpTvd - temporary storage location for TVD value returned by simulation; to be added

later to the total.

Tgt -~ temporary storage for a target type number.

47




TgtClassTgt - array of target class-target correspondence.

TgtElts - temporary storage location for the data field for target elements in input

file "tgtdat22.dat"™; not used for anything, just provides a way of skipping
unwanted data fields to get to wanted ones.

TgtsDeadOrInRepair - array of cumulative number of targets dead or in repair for each
target type BY PERIOD (not to be confused with the cumulative so far}
over the whole simulation run; because of the nature of this variable,
it may be possible that it has a negative quantity stored at the end
of some periods (except the 1lst period), however, the sum of these
quantities over all periods, or just more than one period, will always
be a positive value (or zero).

TgtsInClass - array of the number of targets in each class.

TgtVal - array of target values for all targets over all periods.

TotSortiesFlown - total number of sorties flown over all aircraft and all days for the

last simulation run.

TotTgts - array of the total number of each type of target.

Tvd - sum of TVD values returned by simulation for each aircraft type in each period.

TvdWgt - objective function weight for TVD.

v — objective function value for weighted sum of TVD.

x - number of sorties flown for a particular aircraft type against a particular target

type.

e e e sk ok ok ek

Lines of program code used for debug purposes only (which may also be useful to some
users as a normal part of the program) are annotated with *** debug *** in comment
brackets. Any variables specifically declared and needed for their execution are
defined below. These lines of code may be deleted or commented out without disturbing
normal program execution, however, they must all either be deleted in their entirety or
retained in their entirety because removal of only portions of *** debug *** code may
disturb other portions retained if they relied on values obtained from the code that
was removed.

Debug Variable definitions:

P - counter variable for For loops.
PropKilled - cumulative proportion of targets of the target type killed.
T - counter variable for For loops.

dede ko dedekokdeok

Notes for below:

(1) Have to read the aircraft types as seperate data and store them in an array,
even though we know the number flying, because the types are not sequential,

i.e., certain aircraft types may not be present in the GAMS model data for
one reason or another.

(2) Only desire certain data from "tsvtst.dat"™ (see comments at beginning of program),
so any undesired data, i.e., not useful to the simulation run, is just dumped off
into a temporary storage location, and then just discarded when another data item
gets put there. Only certain data within the first 12 quantities in "tsvtst.dat”
is required, so rather than wasting time in reading to the end of each line of
data, the first 12 items are read, the useful data extracted, and then the rest
of the line skipped. The GAMS model will always output data to tsvtst the same
way, 50 this method of reading data will always apply.

(3) This loop simply ensures that all the data meant to be output gets written to the
output data file. This is required since sometimes long programs will terminate
normally, but not all data will be written to the output file if it is sent to one
(this problem does not exist if output only goes to the screen, but it's hard to
analyze data that way). The loop, therefore, slightly delays program termination
so there is time for all data to get written to the output file.

(4) The standard deviation will not be calculated or output unless at least 30
replications are performed. This is so it will have at least some meaning when it
is calculated.

(5) This limits the number of times the obj fcn value is output for each replication to
a maximum of 100 times, no matter how many replications are being done. This is
done to prevent the output file from growing larger than typical spreadsheet
software can handle.

Var

SimInFilel, SimInFile2, SimInFile3, SimInFiled, SimOutFile: Text;
Ch: Char;

NumPeriods, NumAcftTypes, NumTgtTypes, NumTgtClasses: Integer;

Tgt, Pd, DistBandNum, Acft, Class, I, TgtElts: Integer;
NunTgtsInBand, TempSumTgts, NumDays, DataValRead: Integer;
TotSortiesFlown, BeforeTgtsDeadOrInRepair, deltaTgtsKilled: Integer;
P, T: Integer; {*** debug ***}

48




Attr, Tvd, TempTvd, v, Sumv, TvdWgt, Templ, Number: Real;
GoalWgt, Eks, Nabort, Temp2, x, Pr, NPr, Pc, NPc, B, NB: Real;
SumX1, SumX2, StdDev: Real;

PropKilled: Real; {*** debug ***}

TgtVal, Pdiff: TgtValueArray;

TgtsDeadOrInRepair: TgtKillArray;

BdaProb, RepProp: TgtRealTypeArray;

TotTgts, RepTime, LiveN, DeadN, RegenN, LiveR: TgtIntTypeArray;
DeadR, RegenR: TgtIntTypeArray;

AcftType, NumAcft, Maxloss, AcftLost: AcftTypeArray;
SortieRate: SortieRateArray;

Goal, Ppen: KillGoalArray;

TgtClassTgt: TgtClassTgtArray;

TgtsInClass: TgtClassArray;

St: StringType:;

Begin {Main Program}
( S e e de ke gk K Kk
Use only one of the following two seed statements for seeding the random number generator.
Comment the other one out.
e e e e K e ok ke ke ok
}
RandSeed := SEEDFORRANDNUMS; {uses the Const declared seed so random nos. ARE repeated}
{ Randomize;} {takes a seed off the system clock so random nos. ARE NOT repeated}
Assign (SimInFilel, 'sim2in.dat');
Assign (SimInFile2, 'tgtval22.dat');
Assign (SimInFile3, 'tgtdat22.dat'});
Assign (SimInFile4, 'tsvtst.dat');
Reset (SimInFilel);
Reset (SimInFile2);
Reset (SimInFile3);
Reset (SimInFiled);
Assign (SimOutFile, 'sim2out.csv');
ReWrite (SimOutFile);

e e ke ke ko ek ke

Read in target value data from "tgtval22.dat".
Kk e J¢ de de I ek ek

NunTgtTypes := 0;

While (Not (SeekEof{SimInFile2))) Do

Begin
Read (SimInFile2, Tgt);
NumTgtTypes := NumTgtTypes + 1;
For Pd := 1 To MAXNUMPERIODS Do

Begin
Read (SimInFile2, TgtVal[Tgt,Pdl);
End; {For}

Readln (SimInFile2);
End; ({While}

e ek ok ke e ok ok ke ok

Read in target data by distance band, total targets, bda probability, repair time,
percent of killed targets that regenerate from "tgtdat22.dat™.

e S e ke ke e e e ke ok

While (Not (SeekEof(SimInFile3))) Do
Begin
Read (SimInFile3, Tgt);
TempSumTgts := 0;
For DistBandNum := 1 To MAXNUMDISTBANDS Do
Begin
Read (SimInFile3, NumTgtsInBand);
TempSumTgts := TempSumTgts + NumTgtsInBand;
End; {For}
TotTgts[Tgt] := TempSunTgts;:
Read (SimInFile3, TgtElts);
Read (SimInFile3, BdaProb[Tgt]);
Read (SimInFile3, RepTime[Tgt]):
ReadLn (SimInFile3, RepProp[Tgtl);
End; {While}

e ek e e e e e e ke

Read in simulation specific data from "sim2in.dat™.
e de ke S e ok ke Wk

Readln (SimInFilel, TvdWgt, GoalWgt):;

49




-

Readln (SimInFilel, NumPeriods, NumDays);
Readln (SimInFilel, NumAcftTypes);
For Acft := 1 To NumAcftTypes Do
Begin
ReadLln (SimInFilel, AcftType[Acft], NumAcft [AcftType [Acft}], MaxLoss[AcftType|[Acft]],
SortieRate [AcftType {Acftl]); {** Note 1 **}
End; {For}
Readln (SimInFilel, NumTgtClasses);
For Class := 1 To NumTgtClasses Do
Begin
Read (SimInFilel, Templ):;
For Pd := 1 To NumPeriods Do
Begin
Read (SimInFilel, Goal{Class,Pd]);
End; ({For}
Readln (SimInFilel);
End; {For)}
For Class := 1 To NumTgtClasses Do
Begin
Read (SimInFilel, Templ);
For Pd := 1 To NumPeriods Do
Begin
Read (SimInFilel, Ppen[Class,Pd]);
End; {For}
Readln (SimInFilel);
End; {For}
For Class := 1 To NumTgtClasses Do
Begin
Read (SimInFilel, Templ);
Tgt = 0;
While (Not (SeekEoln(SimInFilel))) Do
Begin
Tgt := Tgt + 1;
Read (SimInFilel, TgtClassTgt{Class,Tgt]):
End; {While}
TgtsInClass[Class] := Tgt:
ReadLln (SimInFilel});
End; {For}

e J g de ok ok ok ok ok ok

Start replication loop; begin reading data from "tsvtst.dat™ and run simulation.
e e ek ok ke e e ke e

Sumv := 0.0;
SumXl := 0.0;
SumX2 := 0.0;

e e ek kb kR ke ke

If you do not want the objective function value for each replication output to the
output file in tabular format, comment out the next line. If you want it in tabular
format, don't comment it out, but then you must also choose the 2nd method of the two
presented further below of outputting the replication and obj fcn value (see imbedded

comments below).
o e e e ke e ok e e ok

Writeln (SimOutFile,'"Replication"',’,','"Obj Fcn Val"');}
For I := 1 To NUMBERREPS Do
Begin

e e e e e e e e K
Next If..Then is *** debug ***. These are the column headings for the major output

statistics output showing the results of a particular replication simulation run.
e sk e de b W e ke ke

If ((I = REPOUTL) Or (I = REPOUT2) Or (I = REPOUT3)) Then

Begin
If (I <> 1) Then
Begin
Writeln (SimOutFile);
End;

Writeln (SimOutFile, '"Replication™',’,"', '"Period™’,',"', '"Aircraft"',',"’,
'ITargetl',l"' '"Classﬂ’,"l,!'EKSW'l" l,"Nabort",l,""Attrﬂ""l,
'"Sorties™',',", '"TotSortiesFlown"',',"', '"SortieRate"', ', "', ' "MaxLoss""', ', ",
'"Acftlost™',', ", ""Kill Goal™',’',','"PropKilled®*, ", ', '"pr"’,",",
'HPCWI"'l,'"Bﬂl,l,!,IﬁLiveva'!,','lDeadNHl""’I"'Regean'(l"Yr
!wLiveR’l!,l'l""Deaan" l, l" '"RegenRﬂl’ l'(’l"TOtTgtsui'!' l'
'"deltaTgtsKilled™', ', ', ""TgtsDeadOrInRepair”’,*,*, ' "TgtVal®"',*,",
""deltaTVD"',’,', ""TVD"');

50



End; {If}
Reset (SimInFiled);

St = "'";
Tvd := 0.0;
For Acft := 1 To NumAcftTypes Do
Begin
AcftLost [AcftType[Acft]] := 0;
End; {For}
For Tgt := To NumTgtTypes Do
Begin
LiveN{[Tgt] := TotTgts[Tgt];
DeadN[Tgt] 3= 0;
RegenN[Tgt] := 0;
LiveR[Tgt] := 0;
DeadR{Tgt] := 0;
RegenR[Tgt] := 0;
For Pd := 1 To NumPeriods Do
Begin
Pdiff[Tgt,Pd] := 1.0;
TgtsDeadOrInRepair[Tgt,Pd] := 0;
End; ({For}
End; ({For}
While (Not (SeekEof({SimInFiled))) Do
Begin
For DataValRead := 1 To 12 Do {** Note 2 **}
Begin

Read (SimInFile4, Ch);

While (Ch <> ',') Do

Begin

St := St + Ch;
Read (SimInFile4, Ch);
End; ({While}
GetRealNumber (St, Number);
Case DataValRead Of ({** Note 2 *+}
2: Pd := Trunc(Number);
4: Acft := Trunc(Number);
6: Tgt := Trunc(Number);
9: Eks := Number;
10: Nabort := Number;
11: Attr := Number;
12: x := Number
Else
Templ := Number; {** Note 2 **}
End; {Case}
St = '';
End; {For}
Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses):
TempTvd := 0.0;

BeforeTgtsDeadOrInRepair := DeadN{Tgt];} {** debug alternative to next line **}
BeforeTgtsDeadOrInRepair := DeadN{Tgt] + RegenN[Tgt] + DeadR[Tgt} + RegenR[Tgt]:
deltaTgtsKilled := 0;

TotSortiesFlown := 0; {** Data purposes only **}
Pr := RepProp(Tgtl;:

NPr := 1 - Pr;

Pc := 1 - Exp(-{(1 / RepTime{Tgtl)):

NPc := 1 -~ Pc;

e e e e e ke o e e ok

If you want to test the case of perfect BDA, i.e., no restrikes will occur, then remove
comments from next line and comment out the line after next. If you choose perfect BDA
for the B probability assignment here, you must also choose the same option for the NB

probability immediately following the B probability assignment code lines.
e e ke de ke ke ek

B :=1.0;} {** Perfect BDA *+}
B := BdaProb[Tgt}; {** Imperfect BDA **}

e e kR Kk ek ek
If you chose to test the case of perfect BDA, then remove comments from next line and

comment out the line after next.
ok e ke ke ek e ke Kk

NB := 0.0;} {** Perfect BDA **}

NB := 1 - B; {** Imperfect BDA **}

RunSimulation (NumbDays, NumAcft[Acft], MaxLoss[Acft], SortieRate [Acft],
AcftLost [Acft], TotTgts[Tgt], Tgtval[Tgt,Pd], Goal(Class,Pd],
Eks, Nabort, Attr, x, TotSortiesFlown, Pr, NPr, Pc, NPc, B, NB,
LiveN[Tgt], DeadN[Tgt], RegenN[Tgt], LiveR[Tgt], DeadR[Tgtl},

51




RegenR[Tgt],
Tvd := Tvd + TempTvd;
TgtsDeadOrInRepair (Tgt, Pd]

deltaTgtsKilled, TempTvd);

:= TgtsDeadOrInRepair(Tgt,Pd] + ({DeadN[Tgt] +
RegenN[Tgt] + DeadR[Tgt] + RegenR[Tgt]) -
BeforeTgtsDeadOrInRepair) ;

PropKilled := DeadN[Tgt] / TotTgts[Tgt]l;} {** debug alternative to mext line **}
PropKilled := (DeadN[Tgt] + RegenN[Tgt] + DeadR[Tgt] + RegenR[Tgt]) /

TotTgts[Tgt];

Ve ke ok ok ok o e ok ok ke
Next If..Then is *** debug ***.

(*** debug ***)

These are the major output statistics showing the

results of a particular replication simulation run.

e e ok e e Fe e ek ko

If ((I = REPOUT1) Or (I = REPOUT2) Or (I = REPOUT3)) Then

Begin

Writeln (SimOutFile,I1,',',Pd,',’,Acft,’,’,Tgt,',",Class,', ', Eks:9:4,"',",
Nabort:9:4,',",Attr:9:4,",",x:9:4,', ", TotSortiesFlown, ', ',

SortieRate [Acft]

:9:4,', ', Maxloss [Acft], ', ' ,AcftLlost [Acft], ', ',

Goal[Class,Pd]:9:4,',",PropKilled:9:4,"',',Pr:9:4,',"',Pc:9:4,",",
B:9:4,',',LiveN[Tgt], ", "', DeadN[Tgt],*, " ,RegenN[Tgtl, ", ',
LiveR([Tgt},',',DeadR[Tgt],',"',RegenR[Tgt], "', ', TotTgts[Tgtl,"', ',

deltaTgtsKilled,

', , TgtsDeadOrInRepair[Tgt,Pd], ', ', TgtVal [Tgt, Pd]: 9:4, '

TempTVD:9:4,"',',Tvd:9:4);

End; {If}
St = "";
Readln (SimInFiled);

End; {While (Not (SeekEof(SimInFile4)))}

e ke ok ok e sk e ke

Next If..Then is *** debug ***,
output data in the output file.

e e sk e e ok e ok ke ke

This just outputs a blank line to seperate blocks of

If ((I = REPOUT1) Or (I = REPOUT2) Or (I = REPOUT3)) Then

Begin
Writeln (SimOutFile);
End; ({If}

GetPdiffValues (NumPeriods, NumTgtTypes, NumTgtClasses, TgtsDeadOrInRepair, TotTgts,
TgtClassTgt, TgtsInClass, Goal, Pdiff);

e e ek ke ek kK

Next If..Then is *** debug ***,
period.

e e e ke ok e ke ok

This outputs the pdiff values for each target type by

If ((I = REPOUT1} Or (I = REPOUT2) Or (I = REPOUT3)) Then

Begin

Writeln (SimOutFile,'"Period®™*,',','"Target™',"',", ""PAiff"");

For P := 1 To NumPeriods Do

Begin
For T := 1 To NumTgtTypes
Begin
Writeln (SimOutFile,P,*
End;
End;

WriteLn (SimOutFile);
End; {If}
Temp2 := CalculateObjFcnValue

Sumv := Sumv + Temp2;
SumX1l := SumXl + Sqr(Temp2);
SumX2 := SumX2 + Temp2;

e e e ek ek ek

Do

ST, PALfE[T,P):9:4);

(NumPeriods, NumTgtTypes, NumTgtClasses, TgtClassTgt,
TgtsInClass, Tvd, Ppen, Pdiff, TvdWgt, GoalWgt);

If you do not want the objective function value for each replication output to the
output file, comment out the 2 Writeln statements in the next If..Then. Otherwise,
choose one based on your preferred method of having it output, but only choose the 2nd
one if you chose to leave in the tabular format for the output from above.

Ve e e e He e e e ek

If (I <= 100) Then ({** Note 5 **}

Begin

Writeln (SimOutFile,'"Replication:"',*,',I,',','"ObjFcnVal:"",", ", Temp2:15:4);
WritelLn (SimOutFile,I,',',Temp2:15:4);}

End; ({If}
End; ({For replication loop}
v := Sumv / NUMBERREPS;

52

]
’

’



If (NUMBERREPS >= 30) Then {** Note 4 **}
Begin
StdDev := Sqrt((SumXl - (Sqgr(SumX2) / NUMBERREPS)) / (NUMBERREPS ~ 1));
End; {If}
WritelLn (SimOutFile); {*** debug ***}
WriteLln (SimOutFile); {*** debug *¥*}

Y ke e ok sk e e o ke

Pick one of the next two statements to output the number of replications. Pick the
first one if you want to output to the screen only, pick the second one if you want to

output to the output file, then comment the other one out.
e e ke o de ek ke ok e

-

Writeln ('Number of Replications: ',NUMBERREPS);}
Writeln (SimOutFile,'"Number®',',*,'"of"’,",’, '"Replications: "',',', NUMBERREPS);
Writeln (SimOutFile};

e e o de ok ok ke k ok

Pick one of the next two statements to output the objective function value. Pick the
first one if you want to output to the screen only, pick the second one if you want to

output to the output file, then comment the other one out.
e e e sk ke ok dekok ok

-

Writeln ('Objective Function Value (v: weighted sum of TVD): ',v:15:4);}
Writeln (SimOutFile,'"Cbjective™',’,*,'"Function”',',*, " "Value™","',',""(v :"',',"
'"weighted™', ', ', '"sum of"', ", ", ""TVD):"", ", ", v:15:4);
Writeln (SimOutFile);

.-

e e e S e e b ok ke e

Pick one of the two Writeln statements in the following If..Then to output the standard
deviation. Pick the first one if you want to output to the screen only, pick the second

one if you want to output to the output file, then comment the other one out.
e v e ok ok e e e ok ok

If (NUMBERREPS >= 30) Then {** Note 4 **}
Begin
Writeln ('Standard Deviation: *',StdDev:15:4);}
Writeln (SimOutFile,'"Standard”',’,','"Deviation:"*,',"',StdDev:15:4);
End; ({If}

-~

ek e ek e ke ke ok oke

If you are NOT sending output to the output file, comment out the following For loop.
e e e ek ok kek

For I := 1 To 50 Do
Begin
Writeln (SimOutFile);

End; {For} ({** Note 3 **}
Close (SimInFilel);

Close (SimInFile2);

Close (SimInFile3);

Close (SimInFiled);

Close (SimOutFile);

End. {Main Program}

53




The following is the data file “sim2in.dat” used by SimStrike. The format must
remain exactly as shown below, however, the data may change of course, but must be
representative of the items explained below. Note: Do not include the comments in “{}”
shown in the listing below. These are merely for explanatory purposes within this
Appendix only. They do not exist in the actual file, nor should they be included.

9.0 -1.0 {TVDWGT, GOALWGT}

5 12 {no. of periods, no. of days in each period}

9 {no. of aircraft types which will actually be flying sorties}
{Next 9 lines (because there are 9 aircraft types actually flying
sorties in this case) are in the following data format:

aircraft type, no. of aircraft type starting, max. loss allowed for this
aircraft type, sortie rate (sorties per aircraft per day) for this
aircraft type}

1 96 8 1.48

2 72 4 .6

3 16 1 .6

4 12 1 .6

6 36 2 .9

7 102 8 1.09

8 129 7 1.29

9 165 9 1.39

10 72 4 .48

10 {number of target classes}

{Next 10 lines (10 target classes) are in the following data format:
target class, proportion of targets in target class to be killed to
achieve the kill goal for each time period up to the number of periods
over which SimStrike is to be run}

1 .4 .55 T 1.0 1.0
2 .35 .6 .9 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0
4 .75 .95 1.0 1.0 1.0
5 .8 .95 1.0 1.0 1.0
6 1.0 1.0 1.0 1.0 1.0
7 .2 .4 .75 1.0 1.0
8 .25 .35 .5 1.0 1.0
9 1.0 1.0 1.0 1.0 1.0
10 .4 .4 .8 .8 1.

{Next 10 lines (10 target classes) are in the following data format:
target class, objective function penalty for not meeting the time-
scripted kill goal for the target class by the end of the period for
each period}

1 64 64 16 16 64
2 16 16 64 64 16
3 1 1 1 1 1

4 16 16 16 16 16
5 64 64 64 64 64
6 64 64 16 16 4

7 4 4 64 64 64
8 1 1 1 1 16
9 4 4 64 64 16
10 16 16 16 16 16

{Next 10 lines (10 target classes) are in the following data format:

54




target class, listing of targets which belong to the target class (this
is known as target class-target correspondence in TIME STRIKE)}

1 8 16 17 19 37 38 61 65 66 69 70 76

2 14 15 18 20 21 25 29 30 32 36 39 41 42 46 60 62 63 64 67 68 74 75
3 55 56 57 58
4 3456 7 10 11 12 28 47 48 71 72
5 49 50 51 77 78
6 22 26 54
7 23 24

8 9 13 27 31 40 43 44 45 59 73

9 33 34 35

10 1 2 52 53 79 80 81 82 83 84 85 86 87

This is the end of the file “sim2in.dat”. Do not leave any blank lines at the end of
the file, except for one position for the end-of-file marker. As long as the copy of this
file provided with the original form of SimStrike is used as a template for changing the
data contained in it, errors can be prevented.

55




56



APPENDIX B: SAMPLE OUTPUT

The sample output on the following pages is the result of a run of SimStrike using
the model data set provided by Maj. Kirk Yost, USAF, as mentioned in Chapter II. It is
the exact output produced by the program listing in Appendix A. One-thousand
replications were done, with only one-hundred objective function results shown so the
output file would be limited in size so as not to present problems when opening in the
editor of a spreadsheet application (this is also eluded to in the comments within the
program listing). The final results are on the last page of the sample output.

A detailed replication instance is shown for replication number one. The column
headings for the most part are the same name as the variable they represent in SimStrike.
In any event, the headings are self-explanatory as to what statistic they represent. These
headings can be more easily understood, however, if the corresponding variable
definitions in the comments just prior to the main program part of SimStrike are referred
to.

Also, as mentioned in Appendix A, this output can be modified to take different
forms based on the preference of the user. Please refer to the comments imbedded in the
main program part of the program listing to change the output format as desired.

57




+ A B c [3) E £ ) H ! Jd K L M N
:_‘ Repication [Petiod | Aircraft Target Class _ |EKS _[Nabort jAttr Sorties | TotSortiesFlown | SorieRate [Maxi.oss | AcftLost | Kilt Goal
1 1 5 4 783 1 00105 1.127 1 06 4 o 075 0.7
1 1 75 2| 941 1 0.0138] 0387 0.6 4 o] 035 o0.1428
y 1 1 6 4] 78 1 0.0094] 1.161 06 4 6 075 0.7
1 1 2 35 9] T2 1 0.0133] 032 0.6 4 0 1] ©0.2549]
1 1 3 25 2] 048 1 0.0001] 38315 4 06 1 ol o03s] o128
1 1 a5 8/ 048 1 0.0001| 36.793 37 0.8 1 0] 025 02444
1 1 78 5| 182 1 0.0002| 14.307 13 06 1 0 08| 05417
1 1 p2) 7] 096 1 0.0002| 11.781 12 06 1 0 0.2 1823
10 1 1 4z 2| o078 0.0001| 12864 13 Y 1 o] 0.3 3333
11 1 4 40 8| 555 0.818¢ 0.0058]  1.257 2| [ 1 0] 0.2t .1905'
12 1 4 79 10] 5.52| 0.81& 0.0014]  2.167 2 0. 1 0 04 .3529)
13 1 4 28 4] 1.02 0 3 10 0.6 1 o 075 0.0818]
14 1 4 7 4| 9.39 1 o] 0846 1] 0.8 1 0.75 [
15 1 1 4 28 4] 072 1 0] 2052 0 0.8 1 0.75]  0.0618]
18 1 1 33 0.85] 0.7685 0.002| 98.383 101 08 2 0 1] 08273
17 1 1 26 172 1 0.0004| 70527 71 0. 2 C 1 5841
18 1 1 36 0.86 1 0.0004| 13.5¢ 14 0.8 2 0] 035 .0701
19 1 1 38 495 1 0.0003| 455 43 [ 2 ) 0.4 .3321
20 1 1 58 0.95 1 0.0005| 2786 3 08 2 of " 025|  0.222)]
21 1 1 37 1.88 1 0.0004] 41.043 42 0.8 2 0 04 0.396
2 1 1 41 2] 18 0.0004] 115.318 117 09 3 ol 035 0.34
2 1 7 12 4] 1.71] 0.859 0.0072) 48.284 46 1,08 8 o] _075] o0.341
24 1 1 7 3 9] 0.56] 0.8506 0.0444| 34.07 34 1.09 8 1 0.619|
25 1 7 26 8] 275 0.0055] 2895 1 1,00 8 1] 0.4425
26 1 1 5 1 10 3.85 1 0.0049| 55.088 55 129 7 0.4 ¥ aa?fl
27 1 1 18 2] o088 1 0.0045] 50.231 49 1.29 7 0.35 .3400)
28 1 ) 20 2 054 1 0.0037] 19.341 17/ 129 7 3] 035 2083
29 1 25 2] 095 1 0.0041] 43311 4 29 7 2] 035 03482
30 1 [ 27 8] 021 1 0.0043] 52.083 52 129 7 2| 025] 0.2432
31 1 1 30 2| o082 1 0.0028] 19.031 19 2 7 2] 035 02983
1 1 35 8] oe 1 0.0045| 63,681 2 1.28 7 3 1 1
3 1 1 3¢ 2] 086 1 0.0038| 58874 54 29 7 3] 035 03439
34 1 1 3 2| 084 1 0.0038| 141.454. 142 .29 7 4| 035] 0.3478
33 1 1 46 0.78 0.0048| 29.483 o) 20 7 4 035 03171
3 1 1 5| 175 0005| 3582 4 29 7 4 0.8 0.8
37 1 1 8 2 10 084 0.0086] 1381 1 28 7 4 0.4 0
1 1 3 8] 085 0.0043] 43.018' 44 20 7, 4] 025] 02285
39 1 1 26 6 184 0.0023] 13.897 15 26 7 4 1] 0.5928]
40 1 1 17 1| _8.85] 0.9502 0.0055] 20.343 19 1.29 7 4 0.4]__0.2082]
41 1 1 8 64 2| 593} 0.9502 0.0055]  2.863 3 129 7 4| 035 03333
42 1 1 8 o) 1] 583] 09502 0.0055| 10.81 11 1.28 7 ) 0.4 0.271
43 1 1 8 68 2| 638} 09502 00053]  2.097 E 126 7 4l 035] 03077
44 1 1 ) 70 1] 593} 0.9502 0.0055| 823 1 1.29 7 4 04] 03855
43 1 8 48 5| 34 1 0.004] 2124 1.28 7 5 08 0
48 1 50 5] 338 1 6.0037 4.7 2 1.29 7 5 08] 02727
47 1 53 0] 3.57 1 0.0055| 11.077 12 1.28 7 6 0.4]  0.3478,
48 1 62 2] 361 1 0.0042]  7.313 7 1.29 7 6 095 0.25)
49 1 1 77 5| 36 1 0.0057| 48.008 2] 120 7 7 0.8 0.027
50 1 1 8 1]_1.66 1 00051 1.701 1 1.38 9 g 04| 0.3333
3] 1 2 8] 165 1 0.0035| 163.118 163 139 ] 1 1| 08725
82 1 10 4 4| 036 1 0.0037| 15.084 16 048 4 075| _ 0.1429
1 10 15 2| o7 1 0.0056 59.693 60 0.48 4 0.35 0.266
34 1 10 43 8] 128 1 0.00S4|  0.483 [ 0.48 4 025 [i
55 1 1 10 76 1] 8.85] 09502 0.0055] 0198 0 0.48 4 1 0.4 0
56 1 2 19 1] 1.86] 0.7685 0.0023| 280.152 282 1.48 ] of  055] 05118
87 1 [ 1} 1.86] 0.7665 0.0023] 1488 14 1,48 8 0f 055 05185
1 5 4] 783 1 0.0016 _0.367 [5) 0. q G 088 0.7
39 1 75 9.4 1 0.002)|  0.329 1 0. a 0 0.6  0.1429)
60 2 3 25 2] 04 1 o] 82611 61 [+X 1 o 08 05192
61 2 45 0.4¢ 1 0] 243866 25 0. of 035 a:u:ﬁl
62 78 5] 162 1 0] 4964 7 Y o] o085 0.875}
63 2 Fz) 0.9¢ o] 12.278 12 0. 0 0.4] 03848
64 2 4 2[ o078 1 0] 10.379 10 0, 1 0 06| 0.5833
83 2 4 5: 10] "5.47] 0.8185 0.0023]  0.03¢ 0 0. 1 0 04 0
3 1 2 4 4] 553] 0.8185 0.0015]  B.1€ 11 086 1 o 085 0.176]
67 1 4 4] 939 1 o} 027 [ 0. o] o0 gl
€8 2 2] 054 1 0.0001] 16.657 16 09 0 0. 0.4187]
) 38 1] 4985 1 0| 18.288 20 0.9 o 085 0.4511)
70 F € 43 8l 129 1 0.0001] 0228 0 O. 0] o3 o]
T £ 59 0.85 1 0.0001|  1.278 0 X 0] 035 02222
72 2 [ 41 1.8 1 0.0001] 88.335 87 G. 0 0. 0.5887]
73 2 6 50 1.69 1 0.0001] 4.371 4 X o 085 05455
74 2 6 77 1.81 1 0.0001] 34.785 35 0.6 2 o 085 0277
75 7 37 1.48 1 0.0019] 25.024 24 1.09 8 O] 055! _0.5369)
76 1 2 7 26 6] 401 1 0.0014] 11.203 10 1.08 8 0 0.7168|
77 1 2 7 35 1.79] 0.8586 00018] 2797 o 1.08 0 1
T8 1 2 7 36 2] 1.78] 0.350¢ C.0014| 30621 32 1.09 0 08]  0.5987]
79 1 7 36 2] 1.79] 0.850¢ 0.0074] _ 9.488 ] .09 1 0. 0.3658,
80 p 7 40 8| _1.78] 0.859¢ 0.002] _1.841 2 1.09 1] 035 0.3333]
3) 7 46 1.79{ 0.859¢ 0.0017] 14.79¢ 17 1.08 1 0. 0.4878|
) 2 7 2 4] 1.71] 0.8506 0.0012] 16214 17 1.09 8 1] 08 0.578
=) 2 7 33 0.87) 0.8556 0.0017| 2392 8| 1.09 8 1 3
84 1 2 7 54 8] 0.9] 0.850¢ 0.0014] 20312 19 1.08 1 1
83 1 2 7 50 2| 6.83] 0.8502 0.002] 3.582 4 1.08 0.6]  0.3704)
86 1 2 7 64 2| 95| 09502 00021] 1580 3 1.08 06| 05758]
87 1 7 36 1| 8.84] 0.9502 0.002| 3.914 1 1.09 055 03271
88 1 7 68 2] 9.5] 0.850 0.0021] 1,252 1 1.08 1 08| 02692
83 1 7 4 2] 6.32] 0.9502 0.0017] 311 3 1.09 1 08| 05238
90 1 2 7 78 10] 271] 08502 0.0018] 0.5 1 1.00 1 0.4] _ 0.3529]
91 1 2 8 8 1] 1.68 1 0.0008] 0.73¢ 0 1.29 7| 055 03333
92 1 8 18 2| 088 1 0.0007] 51,202 0 1.29 7 7 06 0.25]
1 8 25 2] 0.5 1 0.0006] 17.845 0 1.2 7 7 0.8 05
[o4) 1 p 8 38 2| 084 1 0.0008] 101314 0 120 4 7 06| _036s8]




[ l Pl alrRIsT T v JVvIw] X Y z AA AB
Pr_|Pc_|B |LiveN|DeadN |RegenN |LiveR| DeadR |RegenR | TotTgts |detalgtsKilled | TgtsDeadOrinRepair | Tgtval |
0| 0.0013] 6.8 ol o o o 10 7 7] 7
0.25] 0.6321] 0.7 o 1 0 7 2 11,
4 0 0.0019] 0. 7 ) ] o[ 10 7 7| 26|
0.25] 0.0055| D.8] 3¢ 7 4 o 3 o[ 51 14 13| 317
0.25] 06165 0] 136] 1 2[ o[ 0 o] 15 2 20[ s,
05[ 02835 08 34 o o o 45 13 1] %
025 0011[06] 1] 1 2[ o] @ o & 13 13]_%.
51 05! 00028| 09 42 5o o o % 10 0] 1
[10] 025{ 001e5[ 08 16 o _of o 0 4 8 8
13} 05| 0.0028] 09] 17 2 o o 0 1 5 4 s
[12] 025 oot1j06] 11 i o[ 1 1 7 8 6| 58
i3] 05| 6011]08] 137 o o o 148 9 e
14 0.0018{ 08| 9 ol o _© 0 9 0 o =
15| 05[ oot1os[ 137 6 3 ol 0 0] 148 0 5|3
16] 05/00018] 06 4 27| 24[ 0] ¢ o] 5% 51 51] 305
17]__05[ 00852/ 08] 47| 41 20 1T a7 86] 558
(18] 025 0.016s[ 08 1a6] 7 ) o] 157 11 1153
15} 0] 0.0019] 0] 348 173 ol _o o o] 521 173 73] 85
20] _ojoooisjos[ 7| 2 [ ) 0 9 2 2] 15
21] 05[00018{07| 66| 28] 28] © 1] 149 59 58] 17
(221 0.25| 00028 09| 361| 144] 38| 0] 3 o 47 187 186 5
23] 05| 0011]08] 30| 33| 18] O G 1 &2 54 52| 3,
24] 05[0.0019] 06| & 4 of 1 o 2 1 13]_38,
25| 05/ 00852/ 08] 63| 43 oo o] 113 50| 65,
[26]0.125[ 0.1331] 0.6] 221|130 2o 6 1 860 148 138|214
27] 05[01331] 0, 20 __q0]_of o o] 88 33 30 114
28} 0.25] 00680/ 08| 19| 4 Ao 0 o] 24 5 5| 145
'29) 0.25| 0.0165 08| 102] &5 3o © o 1% 3 )
[30) 0.25[ 0.00s5{ 08 28 1o © [} 57 8| 26,
31]_o5[oe321] 08 19 o o 1 0 7 1 8
32] 025[0.0055[08] 0] 3 6] o © ] 1 38 51 31,
[38] 025/ 0.0165[ 06] 103] 40| 14| © 0 o 157 5} 54 s
541 0.125[ 0.6321] 0.7| 180 5 o 1 o 276 101 28] 63
35] 05[02835[08] 28] 10 o[ 0 o a1 7 13[ 10
1361 0.25[ 02835 1 4 o0 0 4 4] 55¢
37 0.0019 2] 0 o o 0 0 DS
38] 05/ 02835/08] 79| 19 o] 0 1|10 33 7] 408]
39| 05|00052] 08| 48] 55 1 0o o] 1 2 7] &5.
(40} 025/ 01331 08 233 78] 18] 0 2 o] 3% 107 % 8.
[41] 035/ 013%1{07] 22| 10 o o [ ) 1 1] 14
[&2| 025|01331{ 07| 78] 25 4 o[ o o[ 107 30 26| 142
(431 025 01331]07] 1 8 E1 ) o] 2 10 8| 173
44] 025/01331{07] 51| 28 40 1 &8 34 52| 173
&) 05[0.2835] 0 o _© [} [} o[ 524
461 05[02835] 0, o o 0 4 3] 524
[47] 05[0.0619{ 08] 45| 1 o o 1 59/ 2 24] 49
[46] 025/ 0.0016{ 06] 48] 1 1o o & 18 6] 22
(45] 025/ 0.0328] 0.6] 144 Ao 1 o 4 ] 4] 526
50|  ofooo[08] 4 2 o o o 0 2 2| aé
51]_05[06321]07] 19| 113 B o 3 1] A4 211 130 40
[52] 0.25] 0.0852[ 0.8] 42 7 o _of o of @ 7 7] %0,
53] 02504331 08] 69| 18 5o 2 o] 84 31 25] 14,
541 025/ 0.0185[ 0.8 0 ol __© 0 2 0 oo
(55| 025 06321] 08] 3 o @ 0 3 0 o] 114
56| 05| 0.1331] 08 247] 1K 72 0] 3 4] 508 330 2597
37] __ 0]0.0019] 06] 13| _1 ) o 27 14 4] 27
S 0]0.0019] 0. 3 o _© o 10 0 0] 59
591 0.25[ 06321[ 0. 6 1 ol o [} 7 o] o] 2824
60} 025/ 00165/ 06 75| 09 10 0| 1 1158 29 271
611 05 0.2635[ 08] 30 o o © ] S 10 4] 35
(62| 025] 0011]06] 3] 13 2[ 0 1 1 q 8 8] 42
63} 05/ 0002609 32| 12 8o o0 0 52 10 0] 28
Fea] 025[001es[08[ 10] 14 o o o 0 4 8 6] s
0] 6.0019] 0. 0 o 0 0 0 2 0 o[ 4.
[ee ] 025[ 00852 08 103] 20 2[ 0 0 o] 125 26 2[ 204
67| ol oco019] 0. 0 oo 0 9 0 o] 151
(8] 025/ 0.0680] 0.8 14 9 o o o [ 5] 295
0[ 0.0015] 0.6] 286 235 o o o] 52 62 82 17
70| 0.25[ 0.0165[ 0.8 - [i o o 0 2 0 [ R
T 0[0,0019] 0. 72 0 0 ] 0 0
(72| 025 00028 225 252 e O o] 5 137 1368
73] 05]02835[068] 5| 6 ‘o+ 0 o 11 3 3] 38
(74} 025] 00208/ 06| 07| 35 5| _© o 148 E) 37385
78] 05/00018]07] e8] 42 37| © A4 21 21|34
76] 05[0.0852] 05 22| 86 13| 0 1 3 28 4] 342
' 77] 025)00055[08] 0] 35| 18] O © [} 0 o] 37
78] 0.25[ 00165/ 09] ©63] 65| 28] O 0 o] 1t 40 0] 83
[7910.125] 0.6321] 07 175] 100 o _of 1 o] 278 [ 5| 98
80] 05{00028]08] 14] 4 3o 0 o 21 3 124
81§ 05| 02835[ 08] 21| 17 2o 1 o a1 19 18:
&2] o5 oo11]08] 10| 44l 28] 0 _© [ 2 2] 2!
#3] 05/00019]06] O] 29| 26| 0] 0 o] 8 4 4] 3
[ 0.0019{ 06 0] 11 of o] o [ T B 1] 55,
85| o0s5/01331]08] 17| 7 3o o o 7 14 10| 39.8
(861 0 07| 14| __18 0 o 3 1 288
(87 07] 72| 31 0 o 307 28.4
88 07| 19 0 o 28 ] 345
85 7|10 of 1 12 7 1| 227
[90] 0611 o[ _© o 17 0 o] ar.
1 08 4 | 0 ] 0 o[ 37
2 o8] 66| 20 2 o o o & 0 8| 227]
93] 0.25| 00165] 098] 77| 68 [ Y I o] 1% 0 24|18
[ 9410125 06321 07[ 175] 700 ol o 1 ol 278 of 5| 88 8]_71966.3]

59




- Fl o H ] K__| M ] N )
95 b 2 5 5] 175 .0007| _ 1.304 1] 1.29 7 7] 095 03
96 1 2 73 8] 085 .0008|  29.072 0 1.29 7 7] 035 01883
97 1 17 1] 8.85] 0.850 0.0008] _ 10.87 0 1.29 7 7] 055 0.256
98 70 1] 59308502 0.0008| 4526 0 1.29 7 7| 055] 03253
99 1 8 3 10] 357 1 0.0008| _ 1.658 0 128 7 7 0.4] 03478
100 1 73 2] 381 1 .0006|  5.685 0 129 7 7 0.8 0.25]
101 1 1 10] 3385 1 .0007|  8.889 8 1.39 9 0.4 04
102] 1 22 6] 165 1 .0005| 37.804 3 1.39 1 1
163/ E] 2 768 1|__8.85/0.9502 0.0008] 0.087 5 1.39 0.55 [
104) 1 2 49 5| 34 1 0006 _ 0.988 2 130 B 1] 08 0.4
108 2 10 € 4] 085 1 .0005] _ 3.023 0.48 4 1 0.8% 0.8
106 2! 10 15 2] 071 1 .0008| 52 148 52 0.48 ) 1 04 05319}
10 3 1 1] 188} 0.7865 0022] 161.863 162 48 8 0 0 0.6917
108 3 61 1] 1.88] 0.7865 0022|6184 9 48 8 [ 0.7] __0.6667|
109 1 2 5 4] 783 1 0.001€ .087 i 4 3 1 1
110 1 2 75 2| 941 k] 0.002 .376 [} 4 [} 08 0.1429]
191 1 3 25 2] 048 1 0| 50586 53 [} 08l 06218
332 1 3 45 .49 1 o] 28.044 27 [} 05] 04888
113 1 3 78 5| 1.2 1 o] 1837 3 0 1 1
114] 1 3 23 7| 096 o] 21.305 2 1 o] 075 07115
118) 1 3 42 2] o718 o] 12327 12 1 0 0.9 0.875
116 1 4 52 16| 5.47] 0.8185 00023] 026 0 1 [ 0.8 o}
11 4 7 4] 939 o] 0073 0 . 0 1 o]
118 6] 4] 085 .0001] _ 0.787 1 0. 2 0 1 o8]
119 3 20 2] 054 .0001]  19.688 20 [ 2 [ 08| 07083
120 3 2 6] 165 1 .0001| _8.802 5 0 2 [} 1 1
124 3 38 1 495 1 0] 17.563 1 0. : 0 07| 06027
$22] 1 3 43| 8] 120 1 0.0001] 0311 [ [ 2 0 05 0
123 1 3 6 41 2] 18 1 .0001] _25.841 28 .9 2 [} 08| 06638
12 1 3 [ 50 5| 1.69 1 .0001]  1.804 2 2 0 1 07273
1 1 3 8 77 1.81 1 .0001| 13.808 15 ) 0 1} 03849
126 1 3 7 37 1.48] 1 0.0018] 22573 z 1.0¢ 1 07| 0s848)
1 1 3 7 28 4.01 1 0.0013 575 7 1.0¢ 1 1] 0735}
128 1 3 7 35 1.79] 0.8506 0.0015| 0.84 0 .09 1 1 1]
129 3 38 2{ 1.79] 0.8598 0.0013| 36.88 38 08 1 0.9] _0.8025|
130 7 39 2| 1.78| 0.8508 0.0013| 8204 8 09 1 04 0.6554
131] 7 40 8| 1.79] 0.858¢ 0.0019] _ 2.34¢ 2 08 1 0. 0.4762
132] 1 7 46 2| 1.79] 0.850¢ .0018] 1693 17 08 0. 0.6341}
133 7 2 4] 1.71] 0.850¢ 001 6.7 8 09 1] 0.9024
13 1 3 7 33 ol 08| 0.850€ .0023] 4028 2 .09 1 1 1
1 7 54 6] 08[ 08508 .0013] 2,802 0 1.08 1 1
136 1 7 0 2| 6.83] 09502 .0018] 2884 4 1.09 [ bl 08| 06667
13 7 34 2| 95| 08502 0002] 1.828 1 .09 1 08| 0.7879
126] 1 3 7 66, 2| 95/ 08502 0002] 1441 0 1.09 1 08| o0.2892
138 1 3 7 74 2| 832| 0.8502 0.0016] 1.884 2 1.08 1 0. 0.618]
140 1 3 7 70 10| 2.71] D.9502 .0017| _ 3.837 3 1.09 1 0. 0.7059]
141 1 3 8 35 2] 085 ,0006|  33.798 0 1.29 7 Y 0.5962
142} 1 3 8 51 5] 1.7 1 .00G7|_ 0.45 o 129 7 7 6.3
3 1 3 73 8] 085 1 .0006]  33.95€ ) 1.2 7 7 0. 0.1863
1 1 3 70 1] 583 08502 0.0008]  3.967 [} 1.29 7 7 0.7] 03253
143] 1 3 53 10] 357 1 0.0008] 11.39 0 1.29 7 7 08| 0.3478)
148 1 3 82 2] 381 1 0.0006/ ~_6.857 0 1.29 7 7 08| 0.25]
147 1 10| 3.85 1 0.0007| _56.55 57 1.39 i 0.8] 07894
148 1 1 2] 0.8 1 0.0007| 60.657 61 139 E 1 0.9) _ 0.6591
145 1 [ .83] 0.8502 00008] 5114 E 138 1 0.7] 04208
180 1 7€ 85| 0.9502 .0008]__0.085 0 1.38 ] 1 0.7 0
181 1 4 2] 308 1 .0006| _45.105 24 1.39 9 1 08| 08582
182] 1 48 5] 34 1 .0006] _0.408 o 1.38 5 1 1 o_al
183 1 10 15 2| o7 1 .0008] 60.426 60 0.48 4 2 08| 08938
1 10 58/ 8] 085 1 0.0008] 1.747 4 0.4 4 2 05 04444
185 3 10 17 8.85( 0.9502 0.0008| _8.685 [ 0.4¢ 4 07| 03183
156 1 4 1 18 1.86] 0.7865 o0021| 21347 214 1.48 8 5 1 1
1 4 61 1] 1.88 0.7665 .002 9 10 148 8 0 1] 08519
0] 1 4 2 E 4] 783 1 .0016|__0.008 [ 08 4 0 1
159 1 4 3 75 2] 941 1 .0021| 0.162 0 ) 4 [} 0. 4§i
160 1 4 F. 73 8| 754 1 .0021]  2.125 3 06 4 0 0.2255
161 1 4 3 25 2| 048 1 49.665 49 0. 1 0 0.7244)
162} 1 4 3 45 5| 0.49 1 0] 48882 48 0. 1 0 0.7333
163 1 4 3 78 5] 192 o] 0478 0 0. 1 [} 1
16 1 4 3 2 7| 086 0] 15887 18 0. 1 0 1
165 1 2 4 52 10| 5.47} 0.818¢ 0.0023] 0.013 0 0. 0 0.8 0
166 1 4 4 7 4] 930 0] 0004 0 08 0 1 0
16 1 3 3 7 1] 4.35] 0.8502 0.0057| ©0.196 0 06 0 1] 03133
168} 4 20 2] 054 1 00001 9285 ) 2 0 1 0.875!
169 4 38 4.95 1 0] 28818 26 0 1 07927|
179 4 € () 0.85 1 0.0001| 5.676 4 p 0 Y
1T 4 49 71 1 0.0001] 0228 1 2 0 1 0.8
172 4 50 €9 1 .0001 .602 ) E 2 [} 1| 07273
1 1 4 77 1.8 0001 4311 2 X 2 [ 1] 03514
37 1 ) 37 1.48 .0017|_42.047 & 1.09 8 1 1] 0.8567]
179 1 4 26 6] 4.0 0012 3.145 p 1.09 1l 07168
176 1 4 7 35 1.79| 0.850€ 0014 0.49 [0 1.08 1 0.802]
] 1 ) 7 36 1.79] 0.8598 0.0012| 15.504 16 1,09 € 1 omﬁ
178 1 4 7 40 1.79] 0.859€ 0.0018] 7.506 4 1.09 8 1| 05714
179) 1 4 7 48 2] 1.79] 0.859¢ 0.001 887 11 1.08 € 1 oazgl
180 1 4 7 52 16 1.71] 0.850€ 0.001 .074 [3) 1.08 8 68 0
189 1 4 12 4] 1.71} 0.856¢€ 00011 3328 2 1.09 8 1 1 0.878]
1 4 33 §| 087] 0.8588 .0015 1.34 2 1.08 8 1 1 1
183 1 4 54 6] 09| 0859 .001 0.415 c 1.09 F 1 1 1
184) 1 4 7 3B 1 83 1 .0003] _ 1.007 1 1.09 1 1] 07927
189) 1 4 7 17 32} 0.9502 .0018] 14.423 14 1.09 7 1] 03825
106 1 4 7 80 2| e.s3} 08502 061 21 3 1.00 1 1] 08519
18 1 4 7 64 2]  95] 08502 .00 851 0 1.09 1 1 0.697]
108 1 4 7 88/ 2[__95[ 09602 0.0018( 0,671 1 1.08) 1 1] 06154

60




3

|

[
=y

afalalatslolalalalulufslalslulslalolaiolala]alalalalalolafolela]ela]wfslalolelalalotelale

RIS ] 7 U v w] x Y z M AS] a | A
o8| 1| 4 00 0 0 5 0 0] 423| 1688 721351
08| 82| 18 o 1 o o] 102 0 4| 446] 84v.4| 729825
o8| 247] 79 a o 2 o 33 ) A3l 1 1a45| 724278)
07] 55| 28 o] 1] 1 o 83 0 5[ 345 0315 75350
o6l 45| 1 o 1 1 & 0 o] 30 2] 760082
08] 48] 1t Ao © o] 64 ] o a1.2[ 6592| 767574
0.6 143 oo o] 360 6 S| 21| 3004 797814
07 146 2 o 1 o 149 4 18| 338| 50362] 848178
0. 0 o] o © 0 0 o] 227 0| 848176
[ 2 o] _o 0o 0 5 4 2[ 36 72| 848806
0. 7 o o 1 o] 0 i 1] 151 1208 85010.4
0. P 4 o o 1 e 34 25| 28.4] 1420 86430.3
0. 2 87| o] 1 1] 506 183 01| 333  11655] 98085.4
06 1 ol o © of 27 4 4| 444 7002 088846)
038 o _o 1 o] 10 3 3] 18 78] 980626
07 o o o 0 7 0 0 438 439 900085
00 50 7o _© o] 156 20 18] 251 24347] 1014412
0. 2 o o o o] 45 1 7] 344 _758.8] 102198
) 2 2] o o 0 4 3 3| 327]  784.8] 1026828
[ e 200 o 1 0 2 18 17| 343] 1289.1] 1042519
0 19 2] o o 0 4 7 7] 132] _ 277.2] 1045291
0. o o _of o 0 2 0 o] 438 0] 104529.1
) 0 [ I 0 9 0 o] 0. 0] 104529.1
0. 2 3 ol o o ol 10 0 o[ 0. 80.8| __104809,Qi
0. 713 4o o o] 24 11 7| 363]  817.1] 105227
07| o 149 o] _o o o] 149 4 [

0.8] 20731 o ol __3 o] sz 70 78
08] 2 o o] __© 0 ] 0 0
08| 184 288 75 o] 0 o 5a7 e 4
06| 3 o o 1 ol 1 3 2
06] b4 49 o o o 14 15 13
o7] 47| 57 45 O] © o] ae 24 2
08| 30| 74 o0 193 18 2
08] 0] % 18] o[ © o] 51 0 0
09| 31| o 2701 o 157 41 2
0.7] o4] 171 4 o © 1 216 86 &
ool 1] 4 o o o 2 4

o8] 15] 25 i o o o] & 8 €
oo 8 a7 26/ o 1 o] _® 7 2
06 o] 20 28] 0] 0 o] 5 2 0
08] 0 1 o o o o] 11 0 0
0. 14 4 o o o[ a7 14 8
0. 2 2] 1] 1 1 a3 9 7
07 1 7 o o © ol 28 0 0
0. 1 2] o0 o] 21 6

[ 8 3 o 2 o] 7 6

1 098] 63 90 o o o] 156 0 7
06l 1 4 o o o [ 5 0 0
o8| 82| 19 o[ 1 o o] 102 0 [
07| 55/ 26 o 1 1 ol &3 0 o
08] 45| 13 o 1 169 G 0
08| 48] 15 o o o] 64 0 0
06] 83| 263 o 8 0 360 138 133
o8] 30| 43| 15| o © o] &8 44 36
07] 62| 41 al o o o] 07 12 0
o8] 3 0 o[ o o 0 0 [}
08| 77| 31 8]0 0 1547 110 148
06 2 o _o o [ 0 0
0.8 10| 80 4 o o of s 39 34
08| 5] 4 o o o 9 2 2
08] 28] 100 o __© 32 27 21
08| 0] 428 78 0] s 508 265 58
o6 a4 2 of ol 1 o2 5 5
o8] o o of o _1 o] 10 0 0
07 1 o o o 0 7 0 0
08 79| 23 0 0 of 102 8 4

1 058 43| 03] 10 0 o] 15 20 20
0.8 12| 30 3 0 of 45 18 11
06 2 oo o] 24 [ 0
0o 6| 24 27| o] 0 152 15 15
08] 2| 0 o o o 0 0 0
03] 8| 0 o o o o s 0 )
08| 28] 10 ) RIS 0 2
08| 3| 1 2o © o] 24 7 4
09| 108 a1 o o 1 o] _&21 ) E:

08] 1 o o © 0 9 4 2

1 3 o o 1 0 5 2 2

7 o o 1 o] 19 0 0

% 50 2] o o 0] 1% 2 2

6] 84 57 0 1 1Y 44 4

2 78 5. o _© o 113 ] 2

[ I T 1 ) o] s 0 =

9 14 1 27 o © o[ 157 21 17

oo B 4 o0 o of ¢ 3 2

08 7| % 10 © o] 4 18 8

068/ 2] 0 of o] © 0 2 3 o

09] 10| 48] 23] 0] © 1 82 2 3
06| o 30 25 0] _© o] 55 1 [ X
o8] o 11 o o o o] 11 [ 0] 03] 443.3] 2338584
0.6 08| 413 o o o o] 521 0 90| 33.3| 13752.0] 2474113
0.8] 205] 124 3o o o] 332 2 21| 33| 4220.1] 2516404
[ 18 4 i © 127 14 5| 546] 12558 252806.2]
0. 2 o 2 1 o] 33 0 3] 458] 10488 253045
o7 10l 11 2o 3 o 6 S 8] 509! 814.4] 2547504

N
(WY




I
|
|
|
A B C D E F ] 6 H ] K ] N o |
189] 1 4 7 0 84] 0.9502 0.001 4.65 5 0 1] 0.5181]
1904 1 4 7 74 2 32{ 0.9502 0.00% 0.781 1 .0 1 1 0.619)
[191] 1 4 7 76 3.2] 08502 0.0018]  0.43¢ 2 0 1] 03333
[192] 1 4 7 79 10] 271] 08502 0.0016] _0.662 1 1.0¢ 1 0B8] 07059
193} 1 4 1 10] 385 1 0.0007| _ 0.148 0 128 7 0.8 07528
154] 1 4 18 2] o068 1 0.0007|_30.40 0 1.29 7 7 1| 05341
193] 1 4 2 1.65 1 0.0005| 2,04 0 1.29 7 7 1 1
 196] 4 51 1.7: 1 0.0007| 0.078 [7) 1.2 7 7 1 0.8
1197] 4 73 0.9¢ 1 0.0008] 78.817. 0 29 7 7 0.2255/
[ 196] 4 17 85| 0.9502 0.0008] 11.721 Q 29 7 7 u.:?7§l
 199] 4 4 2 .08 1 0,0008! _22.271 0 .29 7 7 0.8537)
1200} 4 58 1 .57 1 0.0008| 1782 0 20 7 7 0. 0.3188
201} 1 4 62 .61 0.0006| 1,909 0 28 7 7 042_51
2072} 4 43 29 1 00008 0671 1 1.39 [ 0.5
1203} 4 [ 5.03] 0.9502 0.0008| _8.938 8 .38 ] 1 1} 0.5881]
204} 4 10 15 2| o071 1 0.0008] 22242 20 0.48 4 2 1| 09787
205} 4 10 38 493 1 0.000¢ .536 5 0.48 4 2 1] 08196
‘ 1 19 1| 1.88] 0.7665 0.0021] 73.660 ) 1.4 8 0 1 1
207} 1 &1 1] _1.88] 0.7665 0.0021 286 1 1.48 ] 0 10851
208} 2 5 4| 783 1 0.0018 [1] 1] 0. 4 0
208} F5) 7] 0.8 1 o] 1313 0. )
2104 2 0.3¢ 1 0] 15176 1€ [ 0 0.7308}
211 4 0.43 1 0] 52749 2 0. 0 1]__0.8667]
212] 4 0.68 1 o]  8.892 10 X [ 1] 0.8556)
213] 4 2] 078 1 of 6149 4 [ [ 1 1
214 g 78 5| 098 1 o] 0513 0 0. 0 1 1
215} S 5 2] 206 1 o] o101 1 0.8 0 0.4288
(218} 5 73 8l 7.57 1 o] 0584 0 0.6 1 0 0.2255
1217} 4 2 10| _5.47] 0.8185 00023] 0133 0 06 0 0
(218} 4 7 4i 939 1 0 0 ) 08 1 0 0
12194 48 5] 1.71 1 0.0001] 0.063 0 0. p 0 1 0.8
2204 5 € 50 5] 189 1 0.0001 0.14 [ o Z 0 1] 07273
77 5 18 1 0.0001 .285 2 0. 2 [ 1] 03784
2221 7 37 1] 1.48 1 0.0017] 5.149 4] 1.00 1 1] 06664
7 26 6| a4 1 0.0012] 1729 2 1.00 1 1] 0.7257]
224} 7 35 9] 1.79| 0.8596 0.0014] 0.458 [1] 1.09 1 1 0.902)
| 223] 7 40 8] 1.78| 0.8508 0.0018] _ 0.428 0 1.08 8 0.5238
228} 48 2| 1.78] 0.8506 00015 253 5 1.09 8 1 1] 0.8537|
7 12 4] 1.71[ 08506 0.0011} 3027 1 09 1 0817
2281 7 33 0.8| 0.8506 0.0022| 0.896 0 09 1
226} 7 54 0.9] 0.850€ 0.0012} 0,050 0 08
230} 7 38 6.3 0.0003] 0.734 1 1.08 0.8311]
7 50 8.83] 0.9502 00018} _ 8,657 0 08 1 0.7037
7 84 9.5 0.8502 0.0018] _0.172 0 1.09 1 1 0.687
233} 7 86 8,84] 0.9502 0.0018]  1.096 0 1.09 ) 1 0.5701
| 234] 7 68 2] 95/ 08502 0.0019[  0.138 0 1.08 ] 1 1] 0.5385)
7 70 84| 0.8502 0.001 0.85 1 1.08 B 1 1 0.518
2361 7 74 2 32| 0.9502 0.001 0.108 [} 1.09 8 1 1 0.81
[237] 7 79 10] 2.71] 0.9502 0.001 2085 4 109 3 0.9412]
| 238 € 1 10] 385 1 0.0007| 28384 0 1.29 7 7 1] 07528
€ 43 29 0.0008] 0911 0 1.29 7 7 1 0.
[ 2408 § 8 51 1.75 0,0007| 0013 0 1.29 4 7 1 0.8
| 241] 8 73 0.85 1 .0008] 21.788 3] 1.28 7 7 0.2255
[ 242] 5 8 53 10] 357 .0008] 5,949 1] 1.28 7 7, 0.3188
| 243] 5 9 2 65 .0005]  0.475 0 1.39 ] 1 1]
| 244] 5 9 17 85| 0.9502 0.0008| 281 2 1.38 ] 1 0.3976
[ 245] 5 9 7 85| 0.8507 0.0008] __0.018 0 1.39 9 1 1] 0.3333
[ 246] 5 9 62 2 61 0.0008] 0.199 1 138 [} 1 1] 0.2008]
247}
2484 Target Pdift
[ 249)] 1 1 0.0139
250] 1 2 04
1 3 0.75
2521 1 4 0.6071
253] 1 5 0.05
| [ 254] 1 [ 0.05
‘ 253} 1 7 675
| [256] 1 8 0.0687
| 1257} 1 9 025
‘ [258) 1 10 0.75
| | 255 1 1 075
| | 280] 1 2 0.1159
| [261] 1 3 0.25
| 262 14 [3]
| 263 15 0.084
‘ 284) 16 o
| 263] 17 0.1018
2664 1 18 0.0091
| 267] 1 19 0.4
1 20 0.1417
1 21 0.35
1270} 3 2 01275
1271] 3 23 0.0077
| 272] 1 24 0.2
1273} 1 25 0.0038
[ 274] 1 26 0.4071
1275] 1 27 0.0068
27¢] 1 28 0.6884
1 777] 1 29 0
[278] 1 30 0.0537
1 279) 3 1 0.25
{ 280] 1 2 0.35
281) 1 33 0.0727
ER 1 34 0.381

62




21

SEBEIRBERSRE

BBl RIE ]

NIy

281

Pl alfrlis] T u jv Y AB | AC
0.25] 0.1331| 0.7| 40| 38 0 0 5 o 88 7 16| 509| 21887
0.25( 08321/ 07| 8| 13 ol _© [ o 21 [} o[ 27.1] 3523
0.25[ 06321/ 08] 2 o] © Q 0 3 3 1] 27. 271
025 0011}06] 5 10 2 o 0 o 17 [} G| 438] 5256
0.125] 0.1331] 0.6] 89| 263 o o 8 o] 380 0 8] 20.4] 55284
05/ 01331} 0.8] 41| 43 4 o 0 o 88 [} 11| _386| 18142
05/ 06321{0.7] 0| 148 o| © 0 o 148 0 0 263] 39187
0.25] 0.2835] 0. 4 o_© 0 [} 5 [} 6] 327|130,
05] 0.2835] 0.8] 7 23 o o [ o @2 [} 4| 8501|1152
0.25] 01331 08] 208| 124 o o 0 of 33 [} 18] 333 41283
0.25{ 0.0028| 0.8] 80| 37 85 0 [ 1 547 0 3 2| 61644
05/ 00019} 0.6 48] 1 8 1 1 o e 0 2| 163] 3588
0.25/ 0.0018] 0B8] 48| 1 [} 0 o 84 0 o[ 50 814.4
0.25| 0.0165] 0.8 o o 1 0 2 1 1] 5. 58
025{01331] 07| 43| 59 30 2 o] 107 23 19]_439| 28098
025 0.1331} 08 2| 81 o C o %4 13 8] 382| 35144
0/ 00019] 0.9] 94| 427 o © [ o] s 12 113]_333[ 142191
0501331/ 08 0/ 470 %0 ] 0] 506 76 o] 243[ 122858
0/ 00018/ 06] 4] 23 o] 0 0 of 27 0 0] S24 7452
o[ 00018/ 08 0 [ o _© 1 0 10 [] o] 17.8 178
05/ 00028( 09] 0 25 270 0 o 52 ] of 501] 26052
0.25] 0.0165] 0.6 42| 108 8 _© 0 [ 5 i 27| som
05) 02835/ 08} 6] 37 2|0 0 o 45 15 6] 39.1] 15248
0.25{ 0.0028| 08| 78| 374 84l 0 0 o 57 1] 31| 14508
0.25] 0.0165] 0. o 20 a0 0 o 24 3] 31 744
0.25] 0.011] 0. o] 2 2l © 1] o 2 0 885.6
025{ 06321} 07) 4 2 o o 1 0 7 2
0.5] 0.2835] 0.8] 7 z o ¢© [} o] 1062 0 0
0[ 0.0019] 0.6 0 o o [} 0 2 0 0
6] 0.0018} 0. 0 o _© [} 0 S [i] 0
0.5] 0.2835] 0. 3 o _© 0 E 0 0
05[ 0.2835] 0. 3 7 o o o 1 [} 0
0.25[ 0.6328] 06] 92| 51 ) 0] 148 4 4
05/ 00018 0.7] 5| 86 58] 0 0 o] 149 2 1
05/ 00852/ 08] 31| 79 3 0 0 o 113 4 1
0.25! 0.0055] 0. 5| 3 1 1 0 o 51 0 ]
0.5] 0.0028/ 0.8] 10 8 [} 0 o = [} £
05 0.2835) 0. el 34 [} 1 o a4t a 1
05| 001108 4] 48 1 1 0 o & 0 5
05/ 0.0013[ 0. [ P 0 o 55 [} [
0.0019} 0. o[ 11 o © [ o 11 0 0
0/ 0.0018] 00| 88| 432 o] _© 1 o szt 6 6
5] 01331} 0. 8] 18 2 0 o 27 0 4
025(01331107] 8] 22 o[ 2 o 33 ] 0
0.25[0.1331] 0.7] 46| 58 [} o[ 107 [] 3
025/ 01331/ 0.7 12| 1 0 0 o] 28 0 2|38,
025! 0.1331] 07| 40| 43 o0 0 o 8 [} 0] 39.1] 16813| 3714873
025! 06321| 07| 8| 13 o _© 0 o 21 0 of 1 206 3716853
025 0011] 06 1| 12 3o [} o 17 3 4 & 720] 3724153
0.125[ 01331/ 08| 88| 263 of @ 8 0] 380 ) o 1 3252| 375667.9)
0.35] 0.0165[ 08 1 0 ) 1 [} 2 0 o] 22 22.7| 375690
0.25| 02835/ 0.6 1 4 o _© [) 0 5 [ 0| 36.9] 147.6] 3758376
05] 0.2835] 03] 79| 2 o o [} o 102 0 0] e3.7] 14851 3773027
05[00019{ 0.6] 48] 13 1 1 o 89 0 0| 262| _576.4| 3778781
05/ 06321/ 0. o 148 0 0 0] 149 0 0| 24.6] 3665.4] 361544.5§
025} 01331} 0.8] 200] 13 [i] 0 I 9 8| 24.3] 3207.6| 3847521
0.25{06321| 08] 2 0 0 0 3 0 o 1 16| 384768.1
025/00019/ 08 45 18 11 o 0 0 64 3 3] 63.2] 1200.8] 385066.9]

63




[+
z
=
ot
x
-
z
[}
w
w
-]
o= sislalg REERERNEEEEEREORREREEE B FEEACIRE SRR R EER BRI RERERRERR NP RARRERRRREEERRNEEER
oJo NN N~ ©, [N DY @|o N @ ] ©
e R R S R P R R e e R R e e
Iy a| " |olo|o] (o o|a o o; o o o} |o of |o oo = [~ = cle [~ ojcjo| |o Sioia|o|o|a| o o|o]|
SR B R B M R e e R B R R N R R BN ER B R E PR N EEEERERE B e B B R R R R e S S N R S S N B R E R B R R E S E P R R R R SR E N EE |
]
B o 0 R ! 5 ) ) ) P ) [ [ [y et o o i e e gm iy gy pg gy o i s N I e NGRS N NN NN R NN NN N R RRR] N[l |
<

B U R U B B B B B L B B B BB B R B B R B B B B B BB BB BB B B B B BB R N B B R R ERER

64



[+}
z
3
-
X
-
x
[}
'S
w
Q
I DEERNEEEEEE &D&Om0m07557&1ﬁﬁf1 8.41021WE t...uwo7) raomsmwm SN ERERRRERN Q REEEEEM G
o b b4 i 77m0 G o 5le = ~ m olo! & 001m o|Nlojo @y
3/5(°[3 SRS |8 J13cBEle(SI5/5/518]o(8ls & CEEEE eSS MRS e e SR e S
ol° o asjoio ol lo| o] lo ojc|a ofa o -} =1 o| (o|ojo|g ol [ojofolal o olo|ojo|c(a olc! o, =} oloio o]
B|5(513|31818)5|3|B( 8|5 8| 3|8|8!5|B/8|R)T|QRRIRIRIKIRIR| —| V¥ e e~ o mialol e ere ik 22 JISIRIR|N RIR| KB ]| 85| S B[I 8| RI5|RB| 95|92 3] 9/ 9[5 (9[22 53|33 8|85 R38|5|88|3
[
INRNEERERG Nl ®|m. @@ DG ®[®[@ ) ! |
<

65



~]
z
L g
-
x
]
ES
o
w
L
-]
o|gio 07117117.10“28.4”0217111 ~[efa o ~|o - o ~[ei~{o]x 0je R SR RN ﬂ11ﬁ0 oo ol oic -
SN R i e
%) o4 o (=] o i=] = ofo o o o oo o|oio|o o L=l {=] =1[-1[=1]=} ojo (=] O Qjojo =} [=] o (=] o|o|o (=
| bttt S R A B IR S A e e R B B B B S B B B S SN O S B B S S R B R R R B o) B B R R e R R B T N T Y P R R R e S e B e R B R e B N A TR S R R R RN EE
o
2] mimi© 3344444444444444444444‘444444&144444‘44441¢l44444444444t4144444444444444444444444
<
R e B R B o B e e e S B B A e e B R S R S S S B e PR E EE E B R e

66




0.2472

0.824

0.8571

G

QORI |[0] AWl
o
N

o

alaafa
-

HEHEEENEERRERE

-

"
N
o
8
2

ajajo

281818480 BIBIGILIBIBINNBIRRIVINNBB
i

S
=)

0.8812

len{enfnfenlon|en{en]en

J3|B|8|2(B (22 3(|2(B1B8|2UB KX BRI BIB|B|2E BRI
o

73 0.7745

0.381

75 0.5714

wjojaiie o
~
&

78 0.6867

77 0.8218

78 0

79 0.0588

ObjFenval: 3470171.508

ObjFenval: 4171063.232

ObjFeaval: 4140806.39

ObjFeaVal: 4083821.498

ObjFenVval: 4073270.51

ObjFenVal: 4086518.933

ObjFenVal: 4123566.862

ObjFenval: 4084568.448

ObjFenVal: 4085580.472

ObjFenvat: 4105893.224

ObjFcnVal: | 3997702.962

ObjFenVal: 4163280.136

ObjFenval: 4081784.924

W IN[= [Ojolm (N {]niw|N =

sl

ObjFenVal: 4114968.924

67




A B C ] E F G H
Repilication: 15| ObjFenvat: 3979167.878
fication: 168]{ObjFenvat. 4133808.797
861} Replicaton: 7]ObjFenvat: 4059437.72
Replication: 18| ObjFenVat: 4094040.811
Replication: 9| ObjFenval: 4144163.92
684]Replication: 20| ObjFenval: 4114547.027
Replication: 21|ObjFcnVal: | 4033955.253
ication: 22[ObifFenVal: 4118109.15
Replication: 23|ObjFenVal: 4074865.5568
Replication: 24|ObjFenvat: 4104057.719
Replication: 25)ObjFenval; 3218202.77
lication: 26| ObjFenval 4118873.814
879 ication: 27| ObjFenVal: 4055655.809
Replication: 28|ObjFenval: 4110403.775
Replication: 28| ObjFenval: 4122138.388
(32 ication: 30]ObjFeaval: 3906769.952
Y5} Replication: 31 ObjFenVal: 4023204.893
Replication: 32| ObjFenval. 3988794.499
Replication: 33| ObjFenVal: 4054583,331
ication: 34| ObjFenVal: 4038997.849
Replication: 35 ObjFenVal: 4088611.828
Replication: 38| ObjFenval: 4043854.135
881]Replication: 37|ObjFenval:__| 4060650.303
Replication: 38| ObjFenval: 4083528.008
683] Replication: 39|ObjFenval: | 4083010.418
lication: 40;ObjFenval: 4085258.672
ication: 41]0ObjFenval: 4178756.029
Replication: 42| ObjFenVat: 4047517.673
Replication: 43| ObjFenval: 4020402.63
ication: 44|0ObjFenval: 4082329.211
ication: 45|ObjFenVvat: 4028317.318
Replication: 46)0bjFenVal: 4083542.47
891|Replication: 47 |ObjFenval: 4133253.885
ication: 48| 0bjFenval: 4067929.554
Replication: 49|ObjFenval: 4051689.285
Replication: 50{ObjFenval: 4031584.275
Replication: 51]ObjFenVval: 3836811.143
lication: 52{ObjFenvai: 4072785.844
ication: 53| ObjFenVal: 4111118.07
ication: 54]|ObjFenval: 4098812.637
Repiication: $5;0bjFenval: 4128358.63
’ Replication: 56 ObjFenVval: 4156480.60¢
701 Replication: 57|ObjFcnVal: | 4070862.067
Replication: 58 nVal: 89.631
| Replication: 50| ObjFenval: 4159991.225
\ ication: 60| ObjFenval: 4064475.711
Replication: 61]ObjFenVal: 41160590.753
lication: 62| ObjFenVat: 4105091.888
\ 707} Replication: 63 ObjFenVal: 3468738.6
| ication: 84|ObjFonval: | 4128833.606
: Replication: 85 ObjFenVal: 4193142513
: 41 ication: 66| ObjFenval: 4023805.586
| 711|Reptication: 67]ObjFenVal: | 4098923 521
‘ 712{Repiication: 68| ObjFcaval: 40662681.463
| 713{Replication: 89 ObjFenval; 4070238.881
\ 71. fication: 70| ObjFenval: 4033956.162
} 74 ication: 71| ObjFenval: 4078840.1
‘ 71 ication: 72]ObjFenVal: 4104199.360
47| ication: 73| ObjFenvat: 3036527.9
71 lication: 74 ObjFenval. 4083157.768
Ti9yReplication: 75]ObjFenval: 4085758.857
lication: 76| ObjFenVal: 4051164.348
7T21]Replication: 77)0bjFenVal: 4041732.83
Replication. 78| ObjFenval: 4070052.927
ication: 79 ObiFenVal: | 4061430.007
Repilication: 80| ObjFenval: 051679.999
Replication: 81|ObjFenVal 4127228.14€
Replication: 82|ObjFenval: 4158445.21
727{Replication: 83|ObjFenVal: 4150323.01
Replication: 84| ObjFenval: 4052817.272
Replication: 85| ObjFenval: 4007084.461
Replication: B6 | ObjFenVal: 3887224.724
731} Replication: 87| ObjFenvat: 4112180.974
lication: 88{ObjFenval: 4087870.314
Replication: 89| ObjFenval: 4095150.66
Replication: B0 { ObjFenval: 4010501.23
Replication: 91 [ObjFenVal:__| 4152852.787
Replication: 92| ObjFenVat: 4131853.078
T3] Repiication: 93| ObjFenvat: 2818857.241
lication: 84| ObjFenval: 4084504.196
Replication: 95|ObjFenval: 4063929.653
7 ication: 98/ ObjFenvat: 4072448
741 Replication: 97 |ObjFenvat: 2098360.088
74 ication: 88| ObjFenVal: 4027816.571
T43{Replication: 99| ObjFenVal: 4104538.545
744]Replication. 100]ObjFenVal: 4012412 651
7
7
T4TINumber of Replications: 1000
7
T49] Obj Function |Value (v: weighted [sum of |TVD). | 4010560.612
781)Standard___{ Deviation: | 245326.1224

68




LIST OF REFERENCES

Yost, Kirk A., MAJ, USAF, The Time Strike Munitions Optimization Model, Naval Postgraduate

School, Monterey, CA, January 1996.
Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury
Press, 1995.

69




70




INITIAL DISTRIBUTION LIST

No. of copies

Defense Technical Information Center................oooiiiiiiiim i e, 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library.............ooooi 2
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

AFSAA/SAA/SAQ/SAMCI.............................. RO TIRPRN 1
1570 Air Force Pentagon
Washington, DC 20330-1570

Undersea Warfare, Curriculum 525, ... .. . e e, 1
Code 37, Root Hall, Room 103K

Naval Postgraduate School

Monterey, CA 93943-5002

Professor Alan R. Washburn.................... 2
Code OR/WS

Naval Postgraduate School

Monterey, CA 93943-5000

Major Kirk A, Yost, USAF ... . e e e 1
Doctoral Candidate, Department of Operations Research

Naval Postgraduate School

Monterey, CA 93943-5000

Professor Arnold H. BUSS. ..........c.ooiiieii it e e e e e 1
Code OR/BU

Naval Postgraduate School

Monterey, CA 93943-5000

71




